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Mathematics

Spectrum of Random Band Matrices

Abstract

Starting early twentieth century, random matrices played a crucial role in Physics, Statistics,

Engineering and many other branches of science. In this thesis, I have considered spectral proper-

ties of random band matrices. It was known that the limiting spectral distribution of the symmetric

random band matrices follow the Semicircle law after proper scaling. In this thesis, I have consid-

ered the fluctuations of the linear eigenvalue statistics of random band matrices. In other words,

I have considered the fluctuations of the empirical spectral distribution of the symmetric random

band matrices around the Semicircle distribution.

In the second part of the thesis, I have considered the limiting spectral distribution of the

singular values of random band matrices plus a deterministic band noise matrix. And finally, I

conjectured that the limiting spectral distribution of general random band matrices follow the

Circular law.
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CHAPTER 0

Notations

For convenience, we list the notations and abbreviations which are used in this writing.

(1) δx: Degenerate probability measure at x i.e., δx(y) = 1{x=y}

(2) |S| : Depending on the context, cardinality of the set S or magnitude of the complex number

S

(3) S◦ : Interior of the set S OR If S is a random variable then S◦ = S − E[S]

(4) S̄ Closure of the set S

(5) Ω : The underlying probability space

(6) ‖X‖q = [E|X|q]1/q for a random variable X and 1 ≤ q <∞

(7) CLT: Central Limit Theorem

(8) ESD: Empirical spectral distribution

(9) i.i.d.: Independently and identically distributed random variables

(10) <(z): Real part of the complex number z

(11) =(z): Imaginary part of the complex number z

(12) C+ := {z ∈ C : =(z) > 0}

(13) R+ := {x ∈ R : x > 0}

(14) SLLN: Strong law of large numbers

(15) WLLN: Weak law of large numbers

(16) a.s.: Almost sure

(17) pdf: Probability density function

(18) MT : Transpose of the matrix M

(19) M∗: Complex conjugate transpose of the matrix M

(20) an = O(bn): If
∣∣∣anbn ∣∣∣ ≤ C, ∀ n, for some positive constant C

(21) an << bn or an = o(bn): If limn→∞
an
bn

= 0 for two sequences {an}n, {bn}n of real numbers
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CHAPTER 1

Introduction

Random Matrix Theory was developed from several different sources in the early 20th century.

It is used as an important mathematical tool in various fields namely, Mathematics, Physics, wireless

communication engineering etc. One of the earliest example of a random matrix was appeared in

the study of sample covariance estimation which was done by John Wishart [Wis28]. In the early

1950s, Wigner introduced random matrix ensemble to study the energy spectra of heavy atoms

undergoing slow nuclear reactions.

In 1970s, a connection between Random Matrix Theory and number theory was found. The

Riemann hypothesis says that the nontrivial zeros of the Riemann zeta function lie on the line

1
2 + iE with −∞ < E <∞. Assuming the Riemann hypothesis, Montgomery [Mon73] calculated

the asymptotic two point correlation of these zeros, which turns out to be same as the two-lavel

correlation function of the unitary random matrix ensemble.

Random matrices are also used to model wireless channels. A random matrix model of CDMA

networks can be found in [TV04,VS99].

Definition 1.0.1 (Empirical Spectral Distribution). Let M be an n×n matrix, and λ1, . . . , λn

be the eigenvalues of M . Then

µM =
1

n

n∑
i=1

δλi(1.1)

is called the Empirical Spectral Distribution (ESD) of the matrix M .

Limiting behaviour of µn for different types of random matrices is an important class of problems

in Random Matrix Theory. To discuss about limiting behaviours of µns, we need to define a notion

of convergence in the space of measures.
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Definition 1.0.2 (Weak convergence). Let {µn}n be a sequence of measures on a complete

separable topological space S. µn is said to converge weakly to a measure µ if
∫
f dµn →

∫
f dµ

as n→∞ for all bounded continuous functions f : S → R.

The limiting ESD of properly scaled random Hermitian matrices follow the Semicircle law. The

theorem is formulated below.

Theorem 1.0.3 (Semicircle law). Let X = (xij)n×n be an n×n random Hermitian matrix such

that xij are i.i.d. random variables and E[xij ] = 0, E[|xij |2] = σ2 for all i, j. Then the ESD of

1√
n
X converges a.s. to the Semicircle distribution in the weak topology of measures, where the pdf

ρsc of the Semicircle distribution is given by

ρsc(x) =
1

2πσ2

√
4σ2 − x21{|x|≤2σ}(x).

The first proof dates back to Wigner [Wig55,Wig58], where he assumed all finite moments

and the convergence was in probability. There was many improvements thereafter [Arn71,Bai99].

Let X be an n × n random matrix with i.i.d. entries, then XX∗ is a non-negative definite

symmetric matrix. Therefore all the eigenvalues of XX∗ are non-negative real numbers. So, it is

obvious that the limiting ESD of XX∗ can not be the Semicircle distribution. The limiting ESD

of such matrices was found by Marčenko and Pastur [MP67].

Theorem 1.0.4 (Marčenko Pastur law). Let X = (xij)m×n be an m × n random matrix with

i.i.d. real valued random variables such that E[xij ] = 0, E[x2ij ] = σ2 for all i, j. Further assume

that m
n → γ ∈ (0,∞). Then the ESD of 1

mXX
T converges to the probability distribution with pdf

fγ, wea kly, in probability, where fγ is given by

fγ(x) =

(
1− 1

γ

)
1{x=0,γ>1}(x) +

√
(x− γ−)(γ+ − x)

2πσ2γx
1[γ−,γ+](x),

where γ± = σ2(1±√γ)2.

The eigenvalues of random matrices X with iid entries are distributed over the complex plane.

The limiting spectral distribution of such matrices are uniformly distributed over a disk on the

complex plane centred at origin [TVK10].
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1.1. RANDOM BAND MATRICES

Theorem 1.0.5. Let X = (xij)n×n be an n × n random matrix with i.i.d complex random

variables such that E[xij ] = 0 and E[|xij |2] = 1 for all i, j. Then the ESD of 1√
n
X converges weakly

and a.s. to the uniform probability measure on the unit disk on the complex plane.

Classically, the Semicircle law was proved using the moment method. An alternative approach

to find the limiting ESD is the Stieltjes transform method. The Stieltjes transform of a probability

measure µ supported on the real line is defined by

m(z) =

∫
dµ(λ)

λ− z
, z ∈ C+.

The Stieltjes transform characterizes a probability measure uniquely. If {mn}n is a sequence of

Stieltjes transforms of a sequence of probability measures {µn}n such that mn(z) → m(z) for all

z ∈ C+, then µn → µ in the week topology. This approach was used to prove both the Semicircle

law and the Marčenko-Pastur law. However, this method is not useful for proving the Circular

law [BS10]. It can be shown that the Stieltjes transform of the Semicircle law is given by

m(z) =
−z +

√
z2 − 4

2
, z ∈ C+,(1.2)

and that of the Marčenko-Pastur law with parameter γ satisfies

m(z)(1 + σ2m(z))z + (1− γ)σ2m(z) + 1 = 0,(1.3)

where σ2 is the variance of the entries of the random matrices [MP67].

1.1. Random Band Matrices

A special kind of random matrix ensemble is a random band matrix. In 1955, Wigner studied

the matrices H of the form H = K + V , where K is an n × n diagonal matrix consisting of

· · ·−2,−1, 0, 1, 2, · · · , and V is an n×n symmetric sign matrix having non vanishing elements only

up to a distance bn from the main diagonal. Such a matrix H was called as bordered matrix [Wig55,

Wig57]. Random band matrices can be used to model an interacting particle system where a

particle interacts with it’s neighbours only upto a certain distance.

A treatment of random band matrix was done by G. Casati et al. [CMI90,CIM91] in the

context of Quantum Chaos. They studied n × n symmetric random band matrices of bandwidth
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1.1. RANDOM BAND MATRICES

bn, where bn grows with n. In 1992, Molchanov et al. proved the Semicircle law for random band

matrices [MPK92]. In 1991, Fyodorov and Mirlin had shown that b2n
n is a crucial parameter for

the spectral properties of random band matrices [FM91,MFD+96].

The Semicircle law is also true for random band matrix and was proved in early 90’s [BMP91,

MPK92]. Convergence of ESD random matrices is analogous to the WLLN and SLLN in the

classical probability. After SLLN or WLLN, the next forward step is the study of CLTs. Various

CLTs were proven for independent, weakly dependent sequence of random variables. But in Random

Matrix Theory, the eigenvalues of a random matrix are not independent. In fact, they are highly

correlated. Which makes study of CLT for linear eigenvalue statistics more interesting. In Chapter

2, we discuss about the CLT of linear eigenvalue statistics for Hermitian random band matrices.

Then in the Chapter 3 we prove the the Marčenko-Pastur law for random band matrices and in

the Chapter 4 we provide the numerical evidence that the Circular law is true for random band

matrices.

In general, in the study of random matrices, the underlying distributions of the entries of the

random matrix are unknown. Many random matrix results are universal, and they do not depend

on the underlying distributions. However, there are some regimes where universality of the results

may fail, and this research makes an attempt to identify such regimes.
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CHAPTER 2

Central Limit Theorem for Linear Eigenvalue Statistics

In this Chapter, we deal with the CLT for the eigenvalue statistics of band random matrices.

We take the approach of M. Shcherbina in [Shc11] to establish the CLT for band matrices with

bandwidth bn where bn →∞ as n→∞. We give an alternative proof of Li and Soshnikov [LS13]

result on CLT of band matrices when
√
n << bn << n. We have given some simulation results in

Section 2.3, which ensure that the CLT for band matrices will also hold if
√
n/bn 9 0 and bn →∞.

Now we define our model. Let us define the (circular) distance function dn : N× N→ N as

dn(j, k) := min{|j − k|, n− |j − k|},

and the index sets In, I
+
n ⊂ N× N, I1 ⊂ N as

In := {(j, k) : dn(j, k) ≤ bn}, I+n = {(j, k) : (j, k) ∈ In, j ≤ k}, I1 = {1 < j ≤ n : (1, j) ∈ In}

(2.1)

where {bn} is a sequence of positive integers such that bn →∞ as n→∞.

Define a real symmetric random band matrix M = (mjk)n×n of bandwidth bn as

mjk = mkj =

 b
−1/2
n wjk if dn(j, k) ≤ bn

0 otherwise,
(2.2)

where {wii} and {wjk}j 6=k,(j,k)∈I+n are two sets of i.i.d. real random variables with

E[wjk] = 0, E[w2
jk] =

 1 if j 6= k

σ2 if j = k.
(2.3)

Here {wjk}may depend on n, but we suppress it when there is no confusion. Let λ1 ≤ λ2 ≤ · · · ≤ λn

be the eigenvalues of the random band matrix M . Define the linear eigenvalue statistic of the
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2.1. MAIN RESULTS

eigenvalues of M as

Nn(φ) =
n∑
i=1

φ(λi),(2.4)

and the normalized eigenvalue statistic of the matrix M as

Mn(φ) =

√
bn
n
Nn(φ),(2.5)

where φ is a test function.

2.1. Main Results

Theorem 2.1.1. Let M be a real symmetric random band matrix as defined in (2.2), and bn be

a sequence of integers satisfying
√
n << bn << n. Assume the following:

(i) wjk satisfies the Poincaré inequality with constant m > 0 not depending on j, k, n i.e., for any

continuously differentiable function f ,

Var(f(wjk)) ≤
1

m
E
[∣∣f ′(wjk)∣∣2] .

(ii) E[w4
jk] = µ4 for all j 6= k and dn(j, k) ≤ bn.

(iii) φ : R→ R is a test function in the Sobolev space Hs i.e., ‖φ‖s <∞, where

‖φ‖2s =

∫
R

(1 + 2|t|)2s|φ̂(t)|2 dt,

φ̂(t) =
1√
2π

∫
R
e−itλφ(λ) dλ,

and s > 5/2.

Then the centred normalized eigenvalue statistic M◦(φ) =Mn(φ)− E[Mn(φ)] converges in distri-

bution to the Gaussian random variable with mean zero and variance given by

V (φ) =
κ4

16π2

(∫ 2
√
2

−2
√
2

4− µ2√
8− µ2

φ(µ) dµ

)2

+
σ2

16π2

(∫ 2
√
2

−2
√
2

µφ(µ)√
8− µ2

dµ

)2

+

∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2

√
(8− x2)(8− y2)F (x, y)
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2.2. PROOF OF THE THEOREM 2.1.1

×
∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2

µ1φ(µ1)

(x− µ1)
√

8− µ21

µ2φ(µ2)

(x− µ2)2
√

8− µ22
dµ1dµ2 dxdy,

where for x 6= y

F (x, y) = 2

∫ ∞
−∞

(s3 sin s− s sin3 s)

2(s2 − sin2 s)2 − (s3 sin s+ s sin3 s)xy + s2 sin2 s(x2 + y2)
ds,

and κ4 is the fourth cumulant of the off-diagonal entries, i.e., κ4 = µ4 − 3.

2.2. Proof of the Theorem 2.1.1

We follow the approach taken by M. Shcherbina in [Shc11] for full (Wigner) matrix. This

approach is based on two main ideas. The first ingredient is stated in the following proposition

which gives a bound on the variance of linear eigenvalue statistics with a sufficiently smooth test

function in term of the variance of the trace of the resolvent of a random matrix. For a proof of this

result see [Shc11,ORS13]. In what follows, we denote X◦ = X − E[X] for any random variable

X.

Proposition 2.2.1. Let M be an n× n real symmetric random matrix and Nn(φ) be a linear

eigenvalue statistic of its eigenvalue as in (2.4). Then for any s > 0 we have

Var[Nn(φ)] ≤ Cs‖φ‖2s
∫ ∞
0

dy e−yy2s−1
∫ ∞
−∞

Var[Tr(G(x+ iy))] dx,

where Cs is a constant depends only on s, and G(z) = (M − zI)−1, is the resolvent of the matrix

M .

The second ingredient of this approach is to use the martingale difference technique to provide a

good bound on Var(γn) where γn is the trace of the resolvent of a matrix. The following proposition

gives that bound.

Proposition 2.2.2. Consider symmetric band matrix M defined in (2.2) and assume (2.3) is

satisfied. Then for some C > 0 not depending on z, n we have

Var{γn} ≤
Cn

bn

(
y−2 + y−4

)(
max

{
y, |x| − 2

y

})−2
(2.6)

where γn = Tr(M − zI)−1 = Tr(G) and z = x+ iy, y > 0.
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2.2. PROOF OF THE THEOREM 2.1.1

We prove this result in Chapter A . Now we outline the proof of Theorem 2.1.1

Proof of Theorem 2.1.1: By Lévy’s continuity theorem, it suffices to show that if

Zn(x) = E[en(x)], en(x) = eixM
◦
n(φ)(2.7)

then for each x ∈ R

lim
n→∞

Zn(x) = exp

[
−x

2V (φ)

2

]
,

where V (φ) as in Theorem 2.1.1. For any test function φ ∈ Hs, define

φη = Pη ∗ φ,

where Pη is the Poisson kernel given by

Pη(x) =
η

π(x2 + η2)
.

We know that φη approximates φ in the Hs norm i.e.,

lim
η→0
‖φ− φη‖s = 0.(2.8)

For the moment, we denote the characteristic function defined in (2.7), by Zn(φ) (to make its

dependence on φ clear). Then we have

lim
n→∞

Zn(φ) = lim
η↓0

lim
n→∞

(Zn(φ)− Zn(φη)) + lim
η↓0

lim
n→∞

Zn(φη).

Now using the Proposition 2.2.1 and (2.8), we shall show that

lim
η↓0

lim
n→∞

(Zn(φ)− Zn(φη)) = 0.(2.9)

and then

lim
n→∞

Zn(φ) = lim
η↓0

lim
n→∞

Zn(φη).

9



2.2. PROOF OF THE THEOREM 2.1.1

Hence it suffices to find the limit of

Zη,n := Zn(φη) = E [eη,n(x)](2.10)

with

eη,n(x) = exp [ixM◦n(φη)]

as n→∞ and η ↓ 0 uniformly in n. Proofs of (2.9) and (2.10) are given in the next two subsections

and that will complete the proof of this theorem. �

2.2.1. Proof of equation (2.9). First observe that

|Zn(φ)− Zn(φη)|2 ≤ 2|x|2Var [Mn(φ)−Mn(φη)] ≤ 2|x|2 bn
n

Var [Nn(φ)−Nn(φη)] .(2.11)

Now, in view of Proposition 2.2.1, to bound Var [Nn(φ)−Nn(φη)] we need to estimate∫ ∞
−∞

Var (γn(x+ iy)) dx,

where γn(x+ iy) = Tr(G(x+ iy)) and G(z) = (M − zI)−1. We estimate that for y > 0∫ ∞
−∞

(
max

{
y, |x| − 2

y

})−2
dx ≤

∫
||x|−2/y|<y

1

y2
dx+

∫
||x|−2/y|≥y

(x− 2/y)−2 dx

≤ 10

y
+ 10y

Using the above estimate and (2.6), we have∫ ∞
0

dy e−yy2s−1
∫ ∞
−∞

Var(γn) dx ≤ C ′

bn

∫ ∞
0

e−yy2s−14n

(
1

y
+ y

)(
1

y2
+

1

y4

)
dy

= C
n

bn

∫ ∞
0

e−y
(
2y2s−3−1 + y2s−1−1 + y2s−5−1

)
dy

= C
n

bn
(Γ(2s− 3) + Γ(2s− 1) + Γ(2s− 5)) .(2.12)

If we take

s =
5

2
+ ε, ε > 0

10



2.2. PROOF OF THE THEOREM 2.1.1

then Γ(2s − 3) = Γ(2 + 2ε), Γ(2s − 1) = Γ(4 + 2ε), and Γ(2s − 5) = Γ(2ε). By Proposition 2.2.1,

and (2.12), we have

Var (Nn(φ)−Nn(φη)) ≤ C(ε)
n

bn
‖φ− φη‖s.

Using the above estimate and (2.11), we have

|Zn(φ)− Zn(φη)|2 ≤ 2|x|2 bn
n
· C(ε)

n

bn
‖φ− φη‖s

= 2C(ε)|x|2‖φ− φη‖s

→ 0 as η → 0.

The last limit follows from the equation (2.8). This completes the proof of (2.9).

2.2.2. Finding the limit of the characteristic function (2.10). We will be using the

Lemma A.0.1 and Lemma A.0.2 from Appendix in the proof of (2.10). Let us denote the averaging

with respect to {w1i; 1 ≤ i ≤ n} by E1.

Proof of (2.10): Using the dominated convergence theorem we have

d

dx
Zn(φη) =

d

dx
E [eη,n(x)]

=
d

dx
E

[
exp

(
ix

√
bn
n
N ◦n(φη)

)]

= E

[
i

√
bn
n
N ◦n(φη)eη,n(x)

]
.

Since by construction φη = Pη ∗ φ, we have

N ◦n(φη) =
1

π

∫ ∞
−∞

φ(µ)=γ◦n(zµ) dµ, where zµ = µ+ iη.

Hereinafter, we use the finiteness of
∫
R |φ(µ)| dµ for φ ∈ Hs, s > 1

2 , when changing the order of

integration. For notational convenience, from now on we will denote eη,n(x) by e(x). Therefore

d

dx
Zn(φη) = E

[
i

√
bn
n
e(x)

1

π

∫ ∞
−∞

φ(µ)=γ◦n(zµ) dµ

]
11



2.2. PROOF OF THE THEOREM 2.1.1

=
1

2π

√
bn
n

∫ ∞
−∞

φ(µ)E [e(x)Tr (G◦(zµ)−G◦(z̄µ))] dµ

=
1

2π

√
bn
n

∫ ∞
−∞

φ(µ) (Yn(zµ, x)− Yn(z̄µ, x)) dµ,

where

Yn(z, x) = E [e(x)Tr (G◦(z))]

= E [e◦(x)Tr(G(z))]

= nE [G11(z)e
◦(x)]

= −nE
[(
A−1

)◦
e1(x)

]
− nE

[(
A−1

)◦
(e(x)− e1(x))

]
,(2.13)

e1(x) = exp

[
ix

√
bn
n

(Nn−1(φη))◦
]
,

(Nn−1(φη))◦ =
1

π

∫ ∞
−∞

φ(µ)= (γn−1(z))
◦ dµ,

γn−1(z) = TrG(1)(z),

A(z) = z − 1√
bn
w11 +

〈
G(1)m(1),m(1)

〉
,(2.14)

m(1) =
1√
bn

(w12, w13, . . . , w1n)T ,(2.15)

G(1)(z) =
(
G

(1)
ij (z)

)n
i,j=2

= (M (1) − zI)−1,(2.16)

and M (1) is the main bottom (n− 1)× (n− 1) minor of M . In the above notation 〈·, ·〉 represents

the inner product of two complex vectors, i.e., 〈x, y〉 = ȳTx for x, y ∈ Cn−1. Equation (2.13) follows

from the Schur complement lemma, which says that

G11(z) =
1

1√
bn
w11 − z −

〈
G(1)m(1),m(1)

〉 = − 1

A(z)
.(2.17)

Now we rewrite√
bn
n
Yn(z, x) = −

√
nbnE

[(
A−1

)◦
e1(x)

]
−
√
nbnE

[(
A−1

)◦
(e(x)− e1(x))

]

12



2.2. PROOF OF THE THEOREM 2.1.1

=: T1 + T2.(2.18)

Using Taylor expansion we have

A−1 =
1

E[A]
− A◦

(E[A])2
+

(A◦)2

(E[A])3
− (A◦)3

(E[A])4
+

(A◦)4

A(E[A])4
.(2.19)

Therefore, we can estimate

T1 = −
√
nbnE

[(
A−1

)◦
e1(x)

]
= −

√
nbnE

[(
A−1

)
e◦1(x)

]
= −

√
nbnE

[(
1

E[A]
− A◦

(E[A])2
+

(A◦)2

(E[A])3
− (A◦)3

(E[A])4
+

(A◦)4

A(E[A])4

)
e◦1(x)

]
=
√
nbnE

[(
A◦

(E[A])2
− (A◦)2

(E[A])3

)
e◦1(x)

]
+
√
nbnE

[(
(A◦)3

(E[A])4
− (A◦)4

A(E[A])4

)
e◦1(x)

]
.(2.20)

Now we shall estimate each term individually. First of all, since M is a real symmetric matrix we

have

‖G(z)‖ ≤ 1

|=z|
,(2.21)

and, in particular, 1/|A| ≤ 1/|=z|. It can also be checked that 1/|E[A]| ≤ 1/|=z|. Hereinafter

‖X‖ is the spectral norm of a matrix X. Using the above equation (2.21) and the estimates (A.8),

(A.10), we have∣∣∣∣√nbnE [ (A◦)4

A(E[A])4
e◦1(x)

]∣∣∣∣ ≤ √nbn|=z|5
E
[
|(A◦)4|

]
=

√
nbn
|=z|5

O(b−2n ) = O

(√
n

b3n

)
= o(1),

∣∣∣∣√nbnE [ (A◦)3

(E[A])4
e◦1(x)

]∣∣∣∣ ≤ √nbn|=z|4
E
[
|(A◦)3|

]
=

√
nbn
|=z|4

O(b−3/2n ) = O

(√
n

b2n

)
= o(1),

∣∣∣∣√nbnE [ (A◦)2

(E[A])3
e◦1(x)

]∣∣∣∣ ≤ √nbn|=z|3
∣∣E [e◦1(x)E1

[
(A◦)2

]]∣∣
≤ C

√
n

bn

∣∣E [e◦1(x)
(
bnE1(A

◦)2
)]∣∣

13



2.2. PROOF OF THE THEOREM 2.1.1

≤ C
√
n

bn
[Var(e◦1(x))]1/2

[
Var

(
bnE1(A

◦)2
)]1/2

≤ C
√
n

bn
O(b−1/2n )

= O

(√
n

b2n

)
= o(1), as n→∞,

Therefore, we have

T1 =

√
nbn

(E[A])2
E [A◦e◦1(x)] +O

(√
n

b2n

)
=

√
nbn

(E[A])2
E [e◦1(x)E1(A

◦)] +O

(√
n

b2n

)
.

Now

A◦ = − 1√
bn
w11 +

1

bn

∑
i 6=j
i,j∈I1

G
(1)
ij w1iw1j +

1

bn

∑
i∈I1

(
G

(1)
ii w

2
1i − E[G

(1)
ii ]
)
,

where I1 = {1 < j ≤ n : (1, j) ∈ In}. Therefore,

E1[A
◦(z)] =

1

bn

∑
i∈I1

(
G

(1)
ii − E[G

(1)
ii ]
)

and hence

T1 =

√
nbn

(E[A])2
E [e◦1(x)E1(A

◦)] +O

(√
n

b2n

)

=

√
nbn

(E[A])2
E

e◦1(x)
1

bn

∑
i∈I1

(G
(1)
ii − E[G

(1)
ii ])

+O

(√
n

b2n

)

=

√
nbn

(E[A])2
2E
[
(G

(1)
22 )◦e◦1(x)

]
+O

(√
n

b2n

)
=

√
nbn

(E[A])2
2

n
E[γ◦n−1e

◦
1(x)] +O

(√
n

b2n

)

=

√
bn
n

2

(E[A])2
E
[
γ◦n−1e1(x)

]
+O

(√
n

b2n

)
.(2.22)

Hereinafter, all bounds (implicitly) depending on z hold uniformly on the set {µ+ iη : µ ∈ R} for

any given η > 0. Now

∣∣E [γ◦n−1e1(x)
]
− E [γ◦ne(x)]

∣∣ =
∣∣E [γ◦n−1e1(x)

]
− E [γ◦ne1(x)] + E [γ◦ne1(x)]− E [γ◦ne(x)]

∣∣
14



2.2. PROOF OF THE THEOREM 2.1.1

≤
(
E
[∣∣γ◦n−1 − γ◦n∣∣4])1/4 + |E [γ◦n(e1(x)− e(x))]|

= O(b−1/2n ) + |E [γ◦n(e1(x)− e(x))]| .

The last equality follows from (A.11). We estimate

e(x)− e1(x) = exp

[
ix

√
bn
n
N ◦n(φη)

]
− exp

[
ix

√
bn
n
N ◦n−1(φη)

]

=

(
exp

[
ix

√
bn
n
N ◦n(φη)− ix

√
bn
n
N ◦n−1(φη)

]
− 1

)
e1(x)

= ix

√
bn
n

(
N ◦n(φη)−N ◦n−1(φη)

)
e1(x) +

bn
n
O
(
x2
(
N ◦n(φη)−N ◦n−1(φη)

)2
e1(x)

)
=
ix

π

√
bn
n

∫ ∞
−∞

[
φ(µ)=

(
γ◦n − γ◦n−1

)
e1(x) +

√
bn
n
φ(µ)O(γ◦n − γ◦n−1)2

]
dµ.(2.23)

Therefore

E [γ◦n(e(x)− e1(x))]

= E

[
ix

π

√
bn
n

∫ ∞
−∞

φ(µ)

[
=
(
γ◦n − γ◦n−1

)
e1(x)γ◦n +

√
bn
n
γ◦nO

(
γ◦n − γ◦n−1

)2]
dµ

]
.

Using estimates (2.6) and (A.11), we have

∣∣E [= (γ◦n − γ◦n−1) e1(x)γ◦n
]∣∣ ≤ (E[|γ◦n|2]

)1/2 (E [∣∣e1(x)=
(
γ◦n − γ◦n−1

)∣∣2])1/2 = O

(√
n

bn

√
1

bn

)
.

Similarly,

E
[
γ◦nO

(
γ◦n − γ◦n−1

)2]
= O

(√
n

bn

1

bn

)
.

Therefore,

∣∣E [γ◦n−1e1(x)
]
− E [γ◦ne(x)]

∣∣ = O

(
1√
bn

)
.

From the equation (2.22) and the above estimates we have

T1 =

√
bn
n

2

(E[A])2
E
[
γ◦n−1e1(x)

]
+O

(√
n

bn

)

15



2.2. PROOF OF THE THEOREM 2.1.1

=

√
bn
n

2

(E[A])2

[
E[γ◦ne(x)] +O

(
1√
bn

)]
+O

(√
n

bn

)
=

√
bn
n

2

(E[A])2
Yn(z, x) +O

(√
n

bn

)
.(2.24)

Now consider T2. Using (2.23) and (A.1) we have

T2 = −
√
nbnE

[
(A−1)◦(e(x)− e1(x))

]
= − ixbn

π
E
[
(A−1)◦

∫ ∞
−∞

φ(µ)=
(
γ◦n − γ◦n−1

)
e1(x) dµ

]

− 1

π

√
b3n
n
E
[
(A−1)◦

∫ ∞
−∞

φ(µ)O(γ◦n − γ◦n−1)2 dµ
]

= − ixbn
π

∫ ∞
−∞

φ(µ)E
[
e1(x)(A−1)◦=(γ◦n − γ◦n−1)

]
dµ+

√
b3n
n
O

(
1

bn

)

= − ixbn
π

∫ ∞
−∞

φ(µ)E
[
e1(x)(A−1)◦=

(
γ◦n − γ◦n−1

)]
dµ+O

(√
bn
n

)

= − ixbn
π

∫ ∞
−∞

φ(µ)E
[
e1(x)(A−1)◦= (γn − γn−1)◦

]
dµ+O

(√
bn
n

)

=
ixbn
π

∫ ∞
−∞

φ(µ)E
[
e1(x)(A−1)◦(z)=

(
1 +B(zµ)

A(zµ)

)◦]
dµ+O

(√
bn
n

)

= T21 − T22 +O

(√
bn
n

)
,

where B(z) =
〈
G(1)G(1)m(1),m(1)

〉
and

T21 =
xbn
2π

∫ ∞
−∞

φ(µ)E
[
e1(x)(A−1)◦(z)

(
1 +B(zµ)

A(zµ)

)◦]
dµ,

T22 =
xbn
2π

∫ ∞
−∞

φ(µ)E

[
e1(x)(A−1)◦(z)

(
1 +B(zµ)

A(zµ)

)◦]
dµ.

Using =
〈
G(1)m(1),m(1)

〉
= =z

〈
G(1)∗G(1)m(1),m(1)

〉
, it can be easily verified that∣∣∣∣B(z)

A(z)

∣∣∣∣ ≤ 1

|=z|
,

1

|E[A(z)]|
≤ 1

|=z|
, and |E[B(z)]| ≤ 2

|=z|2
.(2.25)

Applying A−1 = 1
E[A] −

A◦

(E[A])2 + (A◦)2

A(E[A])2 to A−1(z), A−1(zµ) and using (A.8), we get

16



2.2. PROOF OF THE THEOREM 2.1.1

bnE
[
e1(x)(A−1)◦(z)

(
1 +B(zµ)

A(zµ)

)◦]
= bnE

[
e1(x)

{
A◦(z)

E2[A(z)]

(
− B◦(zµ)

E[A(zµ)]
+

(1 +B(zµ))A◦(zµ)

E2[A(zµ)]
− E[B(zµ)A◦(zµ)]

E2[A(zµ)]

)}]
+O(b−1/2n )

= bnE
[
e1(x)

{
A◦(z)

E2[A(z)]

(
− B◦(zµ)

E[A(zµ)]
+

(1 + E[B(zµ)])A◦(zµ)

E2[A(zµ)]
+

(B◦(zµ)A◦(zµ))◦

E2[A(zµ)]

)}]
+O(b−1/2n )

=
(1 + E[B(zµ)])

E2[A(z)]E2[A(zµ)]
E [e1(x)bnA

◦(z)A◦(zµ)]− E [e1(x)bnA
◦(z)B◦(zµ)]

E2[A(z)]E[A(zµ)]
+O(b−1/2n )

=
(1 + E[B(zµ)])

E2[A(z)]E2[A(zµ)]
E [e1(x)E1 (bnA

◦(z)A◦(zµ))]− E [e1(x)E1 [bnA
◦(z)B◦(zµ)]]

E2[A(z)]E[A(zµ)]
+O(b−1/2n ).

Using (A.10), from the last expression we get

bnE
[
e1(x)(A−1)◦(z)

(
1 +B(zµ)

A(zµ)

)◦]
=

(1 + EB(zµ))

E2[A(z)]E2[A(zµ)]
E[e1(x)]E [bnA

◦(z)A◦(zµ)]− E[e1(x)]E [bnA
◦(z)B◦(zµ)]

E2[A(z)]E[A(zµ)]
+O(b−1/2n ).(2.26)

Define

Dn(z, zµ) =
(1 + E[B(zµ)])E[bnE1 {A◦(z)A◦(zµ)}]

E2[A(z)]E2[A(zµ)]
− E[bnE1{A◦(z)B◦(zµ)}]

E2[A(z)]E[A(zµ)]
.

Also, using (2.23) and (A.11), we have

E[e(x)]− E[e1(x)]

= E

[
ix

π

√
bn
n

∫ ∞
−∞

φ(µ)=
(
γ◦n − γ◦n−1

)
e1(x) dµ+

bn
n
x2
∫ ∞
−∞

φ(µ)O(γ◦n − γ◦n−1)2 dµ

]

= O(n−1/2) +O(n−1).

Therefore

E[e1(x)] = Zn(φη) +O(n−1/2).(2.27)

Combining (2.18), (2.24), (2.26), and (2.27), we get√
bn
n
Yn(z, x) = T1 + T2

17



2.2. PROOF OF THE THEOREM 2.1.1

=
2

E2[A]

√
bn
n
Yn(z, x) +

x

2π
E[e1(x)]

∫ ∞
−∞

[Dn(z, zµ)−Dn(z, z̄µ)]φ(µ) dµ+O(b−1/2n )

=
2

E2[A]

√
bn
n
Yn(z, x) +

x

2π
Zn(φη)

∫ ∞
−∞

[Dn(z, zµ)−Dn(z, z̄µ)]φ(µ) dµ+ o(1)

≈ 2f2(z)Ỹn(z, x) +
x

2π
Zn(φη)

∫ ∞
−∞

[Dn(z, zµ)−Dn(z, z̄µ)]φ(µ) dµ+ o(1),

where Ỹn(z, x) =
√

bn
n Yn(z, x). Therefore,

Ỹn(z, x) = Zn(φη)
x

2π

∫ ∞
−∞

(Cn(z, zµ)− Cn(z, z̄µ))φ(µ) dµ+ o(1)

uniformly in z with =z = η, where Cn(z, zµ) =
Dn(z,zµ)
1−2f2(z) and f(z) is given in (A.12). Hence

d

dx
Zn(φη) =

1

2π

∫ ∞
−∞

φ(µ)
(
Ỹn(zµ, x)− Ỹn(z̄µ, x)

)
dµ

=
1

2π

∫ ∞
−∞

φ(µ1)

[
x

2π
Zn(φη)

∫ ∞
−∞

φ(µ2) (Cn(zµ1 , zµ2)− Cn(zµ1 , z̄µ2)) dµ2

− x

2π
Zn(φη)

∫ ∞
−∞

φ(µ2) (Cn(z̄µ1 , zµ2)− Cn(z̄µ1 , z̄µ2)) dµ2

]
dµ1 + o(1)

= − x

4π2
Zn(φη)

∫ ∞
−∞

∫ ∞
−∞

φ(µ1)φ(µ2) [Cn(zµ1 , z̄µ2) + Cn(z̄µ1 , zµ2)

−Cn(zµ1 , zµ2)− Cn(z̄µ1 , z̄µ2)] dµ2dµ1 + o(1)

= −xZn(φη)Vn(φ, η) + o(1).

To find the limit of Vn(φ, η), we shall calculate limit of [Cn(zµ1 , z̄µ2) +Cn(z̄µ1 , zµ2)−Cn(zµ1 , zµ2)−

Cn(z̄µ1 , z̄µ2)] as n→∞. Using (A.5) and (A.6),

Dn(z, zµ) =
(1 + E[B(zµ)])E[bnE1 {A◦(z)A◦(zµ)}]

E2[A(z)]E2[A(zµ)]
− E[bnE1{A◦(z)B◦(zµ)}]

E2[A(z)]E[A(zµ)]

=
1 + E[B(zµ)]

E2[A(z)]E2[A(zµ)]
E
[ 2

bn

∑
i,j∈I1

G
(1)
ij (z)G

(1)
ij (zµ) + σ2 +

κ4
bn

∑
i∈I1

G
(1)
ii (z)G

(1)
ii (zµ)

+
1

bn
γ̃n−1(z)γ̃n−1(zµ)])

]
− 1

E2[A(z)]E[A(zµ)]

d

dzµ
E
[ 2

bn

∑
i,j∈I1

G
(1)
ij (z)G

(1)
ij (zµ)

+ σ2 +
κ4
bn

∑
i∈I1

G
(1)
ii (z)G

(1)
ii (zµ) +

1

bn
γ̃n−1(z)γ̃n−1(zµ)])

]
.
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2.2. PROOF OF THE THEOREM 2.1.1

Now using (A.7), we get∣∣∣∣E [ 1

bn
γ̃n−1(z)γ̃n−1(zµ)])

]∣∣∣∣ ≤ 1

bn

√
Var

∑
i∈I1

G
(1)
ii

√
Var

∑
i∈I1

G
(1)
ii = O

(
1

bn

)
.

Letting n→∞, using (A.13) we have

lim
n→∞

Dn(z, zµ) = f2(z)f2(zµ)(1 + 2f ′(zµ))

 lim
n→∞

E[Tn] + σ2 + κ4 lim
n→∞

1

bn

∑
i∈I1

E
[
G

(1)
ii (z)G

(1)
ii (zµ)

]
+ f2(z)f(zµ)

d

dzµ

 lim
n→∞

E[Tn] + κ4 lim
n→∞

1

bn

∑
i∈I1

E
[
G

(1)
ii (z)G

(1)
ii (zµ)

] ,(2.28)

where

Tn =
2

bn

∑
i,j∈I1

G
(1)
ij (z)G

(1)
ij (zµ).

Since Var(Gii) = O(1/bn) (see (A.7)), we have

lim
n→∞

1

bn

∑
i∈I1

E
[
G

(1)
ii (z)G

(1)
ii (zµ)

]
= lim

n→∞

1

bn

∑
i∈I1

E
[
G

(1)
ii (z)

]
E
[
G

(1)
ii (zµ)

]
= 2f(z)f(zµ).

We shall show in the Appendix (A.0.1) that

lim
n→∞

E[Tn] =
1

4π3

∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2

√
8− x2

√
8− y2

(x− z)(y − zµ)
F (x, y)1{x6=y} dxdy,(2.29)

where

F (x, y) = 2

∫ ∞
−∞

u− u3

2(1− u2)2 + u2(x2 + y2)− u(1 + u2)xy
ds,

where u = sin s
s . Therefore,

lim
n→∞

Cn(zµ1 , zµ2) =
1

1− 2f2(zµ1)

[
f2(zµ1)f2(zµ2)(1 + 2f ′(zµ2)) lim

n→∞
E[Tn]

+ f2(zµ1)f(zµ2) lim
n→∞

d

dzµ2
E[Tn] + σ2f2(zµ1)f2(zµ2)(1 + 2f ′(zµ2))

+ 2κ4

{
f3(zµ1)f3(zµ2)(1 + 2f ′(zµ2)) + f3(zµ1)f(zµ2)f ′(zµ2)

}]
.
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Hence

V (φ) = lim
η↓0

lim
n→∞

Vn(φ, η)

=
κ4

16π2

(∫ 2
√
2

−2
√
2

4− µ2√
8− µ2

φ(µ) dµ

)2

+
σ2

16π2

(∫ 2
√
2

−2
√
2

µφ(µ)√
8− µ2

dµ

)2

+

∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2

√
(8− x2)(8− y2)F (x, y)

×
∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2

µ1φ(µ1)

(x− µ1)
√

8− µ21

µ2φ(µ2)

(x− µ2)2
√

8− µ22
dµ1dµ2 dxdy.

This completes the proof of (2.10) and the proof of Theorem 2.1.1. �

Recent development

After submission of our result, M. Shcherbina [Shc15] improved our result by removing the

restriction bn >>
√
n and proved it for all bn which satisfies bn →∞ and bn

n → 0 as n→∞.

2.3. Numerical simulations

Numerical simulations show that the CLT is true for any bandwidth bn as long as bn → ∞.

Here is what we found in MATLAB simulations.
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In the following example we had taken a different test function.
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Figure 2.2. The eigenvalue statistics was sampled 400 times. The test function
was φ(x) =

√
16− x2.

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Linear Eigenvalue Statistics

D
e

n
s
it
y

 

 

Histogram

Density

(a) n = 2000, bn = n0.2.
Fourth moment/(variance)2=3.08

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Linear Eigenvalue Statistics

D
e

n
s
it
y

 

 

Histogram

Density

(b) n = 2000, bn = n0.4.
Fourth moment/(variance)2=2.94

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Linear Eigenvalue Statistics

D
e

n
s
it
y

 

 

Histogram

Density

(c) n = 2000, bn = n0.6.
Fourth moment/(variance)2=3.00

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Linear Eigenvalue Statistics

D
e

n
s
it
y

 

 

Histogram

Density

(d) n = 2000, bn = n0.8.
Fourth moment/(variance)2=3.08

Figure 2.3. The eigenvalue statistics was sampled 400 times. The test function

was φ(x) = e−x
2
.
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CHAPTER 3

Empirical Spectral Distribution of Singular Values

In this Chapter, we shall prove the Marčenko-Pastur law for random band matrices. Ginibre

[Gin65] showed that if M = 1√
n
X, where xij , the entries of X, are i.i.d. complex normal variables,

then the joint density of λ1, . . . , λn is given by

f(λ1, . . . , λn) = cn
∏
i<j

|λi − λj |2
n∏
i=1

e−n|λi|
2
,

where cn is the normalizing constant. Using this, Mehta [Meh67] showed that the ESD µn of

M converges to the uniform distribution on the unit disk. Later on, Girko [Gir84,Gir85] and

Bai [B+97] proved the result under more relaxed assumptions, namely under the assumption that

E|Xij |6 < ∞. Proving the result only under second moment assumption was open until Tao and

Vu [TV08,TVK10].

Following the method used by Girko, and Bai, the real part of the Stieltjes transform mn(z) :=

1
n

∑n
i=1

1
λi−z can be written as

mnr(z) := <(mn(z))

=
1

n

n∑
i=1

<(λi − z)
|λi − z|2

= −1

2

∂

∂<(z)

∫ ∞
0

log xνn(dx, z),

where νn(·, z) is the ESD of ( 1√
n
X − zI)( 1√

n
X − zI)∗. Secondly the characteristic function of 1√

n
X

satisfies [Gir85, section 1]∫ ∫
ei(ux+vy)µn(dx, dy) =

u2 + v2

i4πu

∫ ∫
∂

∂s

[∫ ∞
0

log xνn(dx, z)

]
ei(us+vt) dtds,

for any uv 6= 0, and where z = s+ it.

22



3.1. MAIN RESULTS

Thus, finding the limiting behaviour of νn(·, z) is an essential ingredient in finding the limiting

behaviour of µn(·, ·). In this Chapter, we will focus on finding the limiting behaviour of νn(·, z)

for random band matrices so that it can be used for finding the limiting behaviour of µn(·, ·) for

random band matrices.

We consider the limiting ESD of matrices of the form 1
2bn+1(R + X)(R + X)∗, where X is an

n × n band matrix of bandwidth bn and R is a non random band matrix. Silverstein, Bai, and

Dozier [Sil95,SB95,DS07] considered the ESD of 1
n(R + X)(R + X)∗ type of matrices where X

was m× n rectangular matrix with i.i.d. entries, R was a matrix independent of X, and the ratio

m
n → c ∈ (0,∞).

This Chapter is organized in the following way; in the Section 3.1, we formulate the band matrix

model and state the main results. In Section 3.2, we give the main idea of the proof. In Section

3.6, we prove two concentration results which are the main ingredients of the proof. We shall use

the tools from the Chapter A .

3.1. Main Results

Definition 3.1.1 (Periodic band matrix). An n× n matrix M = (mij)n×n is called a periodic

band matrix of bandwidth bn if mij = 0 whenever bn < |i− j| < n− bn.

M is called a non-periodic band matrix of bandwidth bn if mij = 0 whenever bn < |i− j|.

Notice that in case of a periodic band matrix, the maximum number of non-zero elements

in each row is 2bn + 1. On the other hand, in case of a non-periodic band matrix, the number

of non-zero elements in a row depends on the index of the row. For example, in the first row

there are at most bn + 1 non-zero elements. And in the (bn + 1)th row there are at most 2bn + 1

many non-zero elements. In general, the ith row of a non-periodic band matrix has at most

bn + i1{i≤bn+1} + (bn + 1)1{bn+1<i<n−bn} + (n + 1 − i)1{i≥n−bn} many non-zero elements. In any

case, the maximum number of non-zero elements is O(bn). In this context, let us define some index

sets.
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3.1. MAIN RESULTS

Let M = (mij)n×n be a random band matrix (periodic or non-periodic), then we define

Ij = {1 ≤ k ≤ n : mjk are not identically zero},

I ′k = {1 ≤ j ≤ n : mjk are not identically zero}.
(3.1)

Notice that in case of periodic band matrices, |Ij | = 2bn + 1 = |I ′k| for all j and k. Now we

proceed to our main results.

Let X = (xij)n×n be an n×n periodic band matrix of bandwidth bn, where bn →∞ as n→∞.

Let R be a sequence of n× n deterministic periodic band matrices of bandwidth bn. Let us denote

cn := 2bn + 1 and µM be the ESD of M . Assume that

(a) µ 1
cn
RR∗ → H, for some non random probability distribution H

(b) {xjk : k ∈ Ij , 1 ≤ j ≤ n} is an i.i.d. set of random variables,

(c) E[x11] = 0,E[|x11|2] = 1,

and define (d) Y =
1
√
cn

(R+ σX), where σ > 0 is fixed.

(3.2)

For technical convenience, we assume the band matrices X and R are periodic. However, the

following results can easily be extended to the case when the band matrix is not periodic. We will

discuss it in the Section 3.5.

Let M be an n× n matrix. For convenience, let us introduce the following notation

{λi(M) : 1 ≤ i ≤ n} = eigenvalues of M,

mj := (m1j ,m2j , . . . ,mnj)
T

It is easy to see that MM∗ =
∑n

j=1mjm
∗
j .

Definition 3.1.2 (Poincaré inequality). Let X be a Rk valued random variable with probability

measure µ. The probability measure µ is said to satisfy the Poincaré inequality with constantm > 0,

if for all continuously differentiable functions f : Rk → R,

Var(f(X)) ≤ 1

m
E(|∇f(X)|2).

24



3.1. MAIN RESULTS

It can be shown that if µ satisfies the Poincaré inequality with constant m, then µ ⊗ µ also

satisfies the Poincaré inequality with the same constant m [GZ01, Theorem 2.5]. It can also be

shown that if µ satisfies Poincaré inequality and f : Rk → R is a continuously differentiable function

then

Pµ (|f − Eµ(f)| > t) ≤ 2K exp

(
−

√
m√

2‖‖∇f‖2‖∞
t

)
,(3.3)

where K = −
∑

i≥0 2i log(1 − 2−2i−1) [AGZ10, Lemma 4.4.3]. For example, Gaussian random

variables satisfy the Poincaré inequality. Below, we formulate the main theorems of this Chapter.

Theorem 3.1.3. Let Y be the same as (3.2). In addition to the existing assumption, assume

that

(i) (log n)2 = O(cn)

(ii) H is compactly supported

(iii) Both <(xij) and =(xij) satisfy the Poincaré inequality with constant m.

Then E|mn(z) − m(z)|2 → 0 uniformly on the compact subsets of z ∈ {z : =(z) > η} for fixed

η > 0, where mn(z) = 1
n

∑n
i=1(λi(Y Y

∗) − z)−1 is the empirical Stieltjes transform of Y Y ∗, and

m(z) =
∫
R
dµ(x)
x−z is non-random. In particular, the ESD of Y Y ∗ converges in L2 norm. In addition,

m(z) satisfies

m(z) =

∫
R

dH(t)
t

1+σ2m(z)
− (1 + σ2m(z))z

for any z ∈ C+.(3.4)

In particular, the above result is true for standard Gaussian random variables. The Poincaré

inequality in the Theorem 3.1.3 simplifies the proof significantly. A similar result can also be

obtained without using the Poincaré inequality. However in that case, we prove the theorem under

the assumption that the bandwidth grows sufficiently faster. The theorem is formulated below.

Theorem 3.1.4. Let Y be the band matrix as defined in (3.2). In addition to the existing

assumption, assume that

(i)
n

c2n
→ 0,
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3.2. PROOF OF THE THEOREM 3.1.4

(ii) H is compactly supported

(iii) E[|x11|4p] <∞, for some p ∈ N.

Then E|mn(z) −m(z)|2p → 0 uniformly on compact subsets of z ∈ {z : =(z) > η} for fixed η > 0,

and the Stieltjes transform of µ satisfies (3.4).

Remark 3.1.5. If cn = nα, where α > 0, then the convergence in Theorem 3.1.3 is almost sure.

And if cn = nβ where β = 1
2 + 1

2p , then the convergence in Theorem 3.1.4 is almost sure. We will

discuss about it at the ends of the Sections 3.2 and 3.3 respectively.

Notice that if we take R = 0 and σ = 1, then H is supported only at the real number 0. In

that case, (3.4) simplifies to

m(z)(1 +m(z))z + 1 = 0,

which is same as the equation (1.3) for γ = 1. The figure 3.1 shows some numerical evidence of

Marčenko-Pastur limit law for random band matrices with i.i.d standard Gaussian entries.

Proof of the Theorem 3.1.4 contains the main idea of the proof of both of the theorems. Main

structure of the proof is similar to the method described in [DS07]. However in case of band

matrices, we need to prove a generalised version of the Lemma 3.1 in [DS07], which is proved in

the Propositions 3.6.1 and 3.6.3. In addition, Lemma 3.6.2 gives a large deviation estimate of the

norm of a random band matrix.

Also, it is not necessary for H to be compactly supported. We can truncate rij at a threshold

of log(cn) and have the same result as the Theorems 3.1.3 and 3.1.4. However in that case, we need

the bandwidth cn to grow a little faster; log(cn) times faster than the existing rate of divergence.

We will discuss it in the Section 3.4.

3.2. Proof of the Theorem 3.1.4

Let us define the empirical Stieltjes transform of Y Y ∗ as mn = 1
n

∑n
i=1(λi(Y Y

∗) − z)−1. It

is clear from the context that mn depends on z. But, we omit it hereafter to avoid unnecessary

26
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(c) Bandwidth = 70000.7; Non-periodic band matrix
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Figure 3.1. The above simulations are done with 7000× 7000 random band
matrices with i.i.d. standard Gaussian entries and varying bandwidths.
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3.2. PROOF OF THE THEOREM 3.1.4

notational complexity. Let m : C+ → C be a complex analytic function and σ > 0. Define

fz,σ(m, t) =

[
t

1 + σ2m
− (1 + σ2m)z

]−1
, z ∈ C+, t ∈ R.(3.5)

Proof of this theorem is organized as follows;

(i) mn =
∫
fz,σ(mn, t) dµRR∗/cn(t) + αn such that ‖αn‖2p → 0. Hereafter, ‖X‖q := [E|X|q]1/q.

(ii) For a sufficiently large =(z), {mn}n is Cauchy in L2p. Therefore, there exists m such that

‖mn −m‖2p → 0 as n→∞.

(iii)
∥∥∫ fz,σ(mn, t) dµRR∗/cn(t)−

∫
fz,σ(m, t)dH(t)

∥∥
2p
→ 0.

(iv) Therefore, we have∥∥∥∥m− ∫ fz,σ(m, t) dH(t)

∥∥∥∥
2p

≤ ‖mn −m‖2p +

∥∥∥∥∫ fz,σ(m, t) dµRR∗/cn(t)−
∫
fz,σ(m, t) dH(t)

∥∥∥∥
2p

+ ‖αn‖2p → 0.

As a result, we have m =
∫
fz,σ(m, t) dH(t) almost surely.

(v) Solution to the equation m =
∫
fz,σ(m, t) dH(t) is unique. Since solution to this integral

equation is unique, m is non-random.

The above mentioned method is summarized from [DS07]. However, the band structure plays

a role in the technical parts of the proof of ‖αn‖2p → 0.

We introduce the following notations which will be used in the proof of the theorem.

A =
RR∗

cn(1 + σ2mn)
− σ2zmnI

B = A− zI

C = Y Y ∗ − zI

Cj = C − yjy∗j

m(j)
n =

1

n

n∑
i=1

[
λi(Y Y

∗ − yjy∗j )− zI
]−1

=
1

n

n∑
i=1

(λi(Cj))
−1

Aj =
RR∗

cn(1 + σ2m
(j)
n )
− σ2zm(j)

n I

Bj = Aj − zI.

(3.6)
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3.2. PROOF OF THE THEOREM 3.1.4

Since Y Y ∗ =
∑n

j=1 yjy
∗
j , we observe that Aj , Bj , Cj are independent of yj . This will become useful

in several estimates; in particular, in the proof of Proposition 3.6.1.

Remark 3.2.1. We notice that the eigenvalues of B are given by λi
1+σ2mn

− (1 +σ2mn)z, where

λis are the eigenvalues of 1
cn
RR∗. Therefore,

∫
R

dH(t)
t

1+σ2m
−(1+σ2m)z

can be thought of as 1
ntrB−1 for

large n. So heuristically, proving the theorem is same as showing that 1
ntrB−1−mn → 0 as n→∞.

Let us define

αn = mn −
1

n
trB−1.

It is easy to see that mn =
∫
fz,σ(mn, t) dµRR∗/cn(t) + αn, where fz,σ(m, t) is defined in (3.5).

We first show that ‖αn‖2p → 0 as n→∞.

Using the definition (3.6) and Lemma A.0.6, we have

I + zC−1 = Y Y ∗C−1

=
n∑
j=1

yjy
∗
jC
−1

=
n∑
j=1

yj
y∗jC

−1
j

1 + y∗jC
−1
j yj

.

Taking trace, and dividing by n on the both sides, we obtain

zmn =
1

n

n∑
j=1

y∗jC
−1
j yj

1 + yjC
−1
j y∗j

− 1

= − 1

n

n∑
j=1

1

1 + y∗jC
−1
j yj

.(3.7)

Using the resolvent identity,

B−1 − C−1 = B−1(Y Y ∗ −A)C−1

=
1

cn
B−1

[
RR∗ + σRX∗ + σXR∗ + σ2XX∗ − 1

1 + σ2mn
RR∗ + cnσ

2zmn

]
C−1
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3.2. PROOF OF THE THEOREM 3.1.4

=
1

cn

n∑
j=1

B−1

[
σ2mn

1 + σ2mn
rjr
∗
j + σrjx

∗
j + σxjr

∗
j + σ2xjx

∗
j −

cn
n

1

1 + y∗jC
−1
j yj

σ2

]
C−1.

Taking the trace, dividing by n, and using (3.7), we have

1

n
trB−1 −mn =

1

n

n∑
j=1

[
σ2mn

1 + σ2mn

1

cn
r∗jC

−1B−1rj +
1

cn
σx∗jC

−1B−1rj +
1

cn
σr∗jC

−1B−1xj

+
1

cn
σ2x∗jC

−1B−1xj −
1

1 + y∗jC
−1
j yj

1

n
σ2trC−1B−1

]

≡ 1

n

n∑
j=1

[T1,j + T2,j + T3,j + T4,j + T5,j ] .(3.8)

For convenience of writing Ti,js, let us introduce some notations

ρj =
1

cn
r∗jC

−1
j rj , ωj =

1

cn
σ2x∗jC

−1
j xj ,

βj =
1

cn
σr∗jC

−1
j xj , γj =

1

cn
σx∗jC

−1
j rj ,

ρ̂j =
1

cn
r∗jC

−1
j B−1rj , ω̂j =

1

cn
σ2x∗jC

−1
j B−1xj ,

β̂j =
1

cn
σr∗jC

−1
j B−1xj , γ̂j =

1

cn
σx∗jC

−1
j B−1rj ,

αj = 1 +
1

cn
(rj + σxj)

∗C−1j (rj + σxj) = 1 + ρj + βj + γj + ωj .

(3.9)

Using Lemma A.0.6 for C = Cj + yjy
∗
j = Cj + 1

cn
(rj +σxj)(rj +σxj)

∗ and the above notations,

we can compute

T1,j =
1

cn

σ2mn

1 + σ2mn

[
r∗jC

−1
j B−1rj −

1

αj
r∗jC

−1
j yjy

∗
jC
−1
j B−1rj

]
=

1

cnαj

σ2mn

1 + σ2mn

[
αjr
∗
jC
−1
j B−1rj −

1

cn
r∗jC

−1
j (rjr

∗
j + σrjx

∗
j + σxjr

∗
j + σ2xjx

∗
j )C

−1
j B−1rj

]
=

1

αj

σ2mn

1 + σ2mn
[αj ρ̂j − (ρj ρ̂j + ρj γ̂j + βj ρ̂j + βj γ̂j)]

=
1

αj

σ2mn

1 + σ2mn
[(1 + γj + ωj)ρ̂j − (ρj + βj)γ̂j ].
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3.2. PROOF OF THE THEOREM 3.1.4

Similarly,

T2j =
1

αj
[(1 + ρj + βj)γ̂j − (γj + ωj)ρ̂j ],

T3,j =
1

αj
[(1 + γj + ωj)β̂j − (ρj + βj)ω̂j ],

T4,j =
1

αj
[(1 + ρj + βj)ω̂j − (γj + ωj)β̂j ],

and,

T5,j = − 1

αj

1

n
σ2trC−1B−1.

Using the equations (3.7) and (3.8) and the above expressions, we can write

1

n
trB−1 −mn =

1

n

n∑
i=1

1

αj

[
1

1 + σ2mn
(σ2mn − γj − ωj)ρ̂j

+
1

1 + σ2mn
(1 + ρj + βj + σ2mn)γ̂j + β̂j + ω̂j −

1

n
σ2trC−1B−1

]
.(3.10)

We would like to show that the above quantity converges to zero in L2p as n→∞. So, we start

listing up some basic observations now.

Since xij are i.i.d. and E[|xij |2] = 1, by the SLLN,

1

ncn
trXX∗ =

1

ncn

∑
|i−j|≤bn

|xij |2
a.s.→ 1.

So, µ 1
cn
XX∗ is almost surely tight. Using the condition (3.2)(a) and Lemma A.0.5 we conclude that

µY Y ∗ is almost surely tight. Therefore,

δ := inf
n

∫
1

|λ− z|2
dµY Y ∗(λ) > 0.

As a result, for any z ∈ C+, we have

=(zmn) =

∫
λ=(z)

|λ− z|2
dµY Y ∗(λ) ≥ 0,

=(mn) =

∫
=(z)

|λ− z|2
dµY Y ∗(λ) ≥ =(z)δ > 0.

(3.11)
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3.2. PROOF OF THE THEOREM 3.1.4

Let z =∈ C+ := {z ∈ C : =(z) > 0}, where =(z) stands for the imaginary part of z. For any

Hermitian matrix M , ‖(M − zI)−1‖ ≤ 1
=(z) . Therefore,

‖C−1‖ ≤ 1

=(z)
, ‖C−1j ‖ ≤

1

=(z)
.(3.12)

We also have a similar bound for B−1. If λ is an eigenvalue of 1
cn
RR∗, then λ(B) := 1

1+σ2mn
λ−

(1 + σ2mn)z is the corresponding eigenvalue of B. So,

|λ(B)| ≥ |=λ(B)| =
∣∣∣∣ σ2=(mn)

|1 + σ2mn|2
λ+ σ2=(zmn) + =(z)

∣∣∣∣ ≥ =(z),(3.13)

where the last inequality follows from (3.11).

We can do the similar calculation for Bj . As a result, we have

‖B−1‖ ≤ 1

=(z)
, ‖B−1j ‖ ≤

1

=(z)
.(3.14)

Secondly, we would like to estimate the effect of rank one perturbation on C and B. More precisely,

we would like to estimate C−1 − C−1j and B−1 −B−1j . Using the Lemma A.0.7, we have∣∣∣tr(C−1 − C−1j )
∣∣∣ ≤ 1

|=(z)|
,∣∣∣mn −m(j)

n

∣∣∣ =
1

n

∣∣∣tr(C−1 − C−1j )
∣∣∣ ≤ 1

n|=(z)|
.

(3.15)

Using the estimates (3.11) for z ∈ C+, we have

|1 + σ2mn| =
|z + σ2zmn|

|z|
≥ 1

|z|
|=(z) + σ2=(zmn)| ≥ =(z)

|z|
.

Similarly, we also have |1 + σ2m
(j)
n | ≥ =(z)|z| for z ∈ C+.

Therefore, using the estimates (3.14), (3.15) and the estimate of ‖RR∗‖ from subsection 3.2.1,

we have

‖B−1 −B−1j ‖ = ‖B−1(Bj −B)B−1j ‖

≤ 1

|=(z)|2
‖Bj −B‖

= |mn −m(j)
n |

σ2

|=(z)|2

∥∥∥∥∥ 1

cn(1 + σ2mn)(1 + σ2m
(j)
n )

RR∗ + zI

∥∥∥∥∥ ≤ Kσ2

n
.(3.16)
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3.2. PROOF OF THE THEOREM 3.1.4

Here and in the following estimates, K > 0 is a constant that depends only on p,=(z) and the

moments of xij .

Now we start estimating several components of the equation (3.10).

3.2.1. Estimates of ρ̂j and ρj. According to our assumptions, we have µ 1
cn
RR∗ → H, where

H is compactly supported. Then there exists K > 0 such that

‖rj‖2 = ‖rjr∗j‖ ≤ ‖RR∗‖ ≤ Kcn.(3.17)

Using the estimates (3.12) and (3.14), we have

|ρ̂j | ≤ Kcn, |ρj | ≤ Kcn,

where K > 0 is a constant which depends only on the imaginary part of z.

3.2.2. Estimates of γj , βj , γ̂j and β̂j. Using Proposition 3.6.1 and equations (3.12),(3.14),

(3.17), we have

E[|γj |4p] =
1

c4pn
E
∣∣∣x∗jC−1j rjr

∗
j (C

−1
j )∗xj

∣∣∣2p
≤ K

c4pn
E
∣∣∣x∗jC−1j rjr

∗
j (C

−1
j )∗xj −

cn
n

tr(C−1j rjr
∗
j (C

−1
j )∗)

∣∣∣2p +
K

c2pn n2p
E
∣∣∣r∗jC−1j C−1∗j rj

∣∣∣2p
≤ Knp

c4pn
‖rjr∗j‖2p +

K

c2pn n2p|=(z)|4p
‖rj‖4p ≤

Knp

c2pn
+

1

n2p|=(z)|4p
≤ Knp

c2pn
.

Similarly, we can show that

E[|βj |4p] ≤
Knp

c2pn
.

Notice that there are cn many non-trivial elements in the vector xj and E[|x11|2]=1. Therefore,

E‖xj‖2 = cn. Similarly,

E‖xj‖2p ≤ Kcpn.

To estimate γ̂j , we are going to use Proposition 3.6.1, and equations (3.12),(3.14) (3.17), (3.16).

E |γ̂j |4p ≤
K

c4pn
E
∣∣∣x∗jC−1j B−1j rj

∣∣∣4p +
K

c4pn
E
∣∣∣x∗jC−1j (B−1 −B−1j )rj

∣∣∣4p
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=
K

c4pn
E
∣∣∣x∗jC−1j B−1j rjr

∗
jB
−1∗
j C−1∗j xj

∣∣∣2p +
Kc2pn c

2p
n

(ncn)4p

≤ K

c4pn
E
∣∣∣x∗jC−1j B−1j rjr

∗
jB
−1∗
j C−1∗j xj −

cn
n

tr(C−1j B−1j rjr
∗
jB
−1∗
j C−1∗j )

∣∣∣2p
+

K

c2pn n2p
E
∣∣∣tr(C−1j B−1j rjr

∗
jB
−1∗
j C−1∗j )

∣∣∣2p +
K

n4p

≤ Knp

c2pn
+

K

n2p
+

K

n4p
≤ Knp

c2pn
.

Similarly,

E[|β̂j |4p] ≤
Knp

c2pn
.

3.2.3. Estimates of ωj and ω̂j. Using the Proposition 3.6.1, Lemma A.0.7 and the estimates

(3.12), (3.14), (3.15), (3.16), we can write

1

σ4p
E
∣∣∣∣ω̂j − σ2

n
trC−1B−1

∣∣∣∣2p
=

1

σ4p
E
∣∣∣∣ 1

cn
σ2x∗jC

−1
j B−1xj −

σ2

n
trC−1B−1

∣∣∣∣2p
≤ K

c2pn
E
∣∣∣x∗jC−1j (B−1 −B−1j )xj

∣∣∣2p +
K

c2pn
E
∣∣∣x∗jC−1j B−1j xj −

cn
n

trC−1j B−1j

∣∣∣2p
+

K

n2p
E
∣∣∣tr(C−1 − C−1j )B−1

∣∣∣2p +
K

n2p
E
∣∣∣trC−1j (B−1 −B−1j )

∣∣∣2p
≤ K

c2pn n2p
E‖xj‖2p +

Knp

c2pn
+

K

n2p
+

K

n2p
≤ Knp

c2pn
.

Similarly, it can be shown that

1

σ4p
E
∣∣ωj − σ2mn

∣∣2p =
1

σ4p
E
∣∣∣∣ωj − σ2

n
trC−1

∣∣∣∣2p ≤ Knp

c2pn
.

The above completes the estimates of the main components of (3.10). Finally, we notice that

if z ∈ C+, then =(zy∗j (Cj − zI)−1yj) ≥ 0. As a result, we have |zαj | ≥ |=(z)|.

Plugging in all the above estimates into (3.10), we obtain

E
∣∣∣∣ 1ntrB−1 −mn

∣∣∣∣2p ≤ 1

n

n∑
j=1

Knp

c2pn
=
Knp

c2pn
→ 0.(3.18)
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This completes the proof of ‖αn‖2p → 0. Now we would like to show that ‖mn − ml‖2p → 0 as

n, l→∞. First of all, we notice that

fz,σ(mn, t)− fz,σ(ml, t) =

[
1

t
1+σ2mn

− (1 + σ2mn)z
− 1

t
1+σ2ml

− (1 + σ2ml)z

]

= (mn −ml)

 σ2t
(1+σ2mn)(1+σ2ml)

+ zσ2(
t

1+σ2mn
− (1 + σ2mn)z

)(
t

1+σ2ml
− (1 + σ2ml)z

)


= (mn −ml)fz,σ(mn, t)fz,σ(ml, t)

[
σ2t

(1 + σ2mn)(1 + σ2ml)
+ zσ2

]
.(3.19)

Moreover from (3.11), we know that if =(z) > 0 then =(zmn) ≥ 0,=(mn) ≥ δ=(z) > 0.

Similarly, =(zm) ≥ 0 and =(m) ≥ δ=(z) > 0. From (3.13), we have |fz,σ(mnk , t)| < 1
=(z) for all

t ≥ 0. Similarly, |fz,σ(m, t)| < 1
=(z) for all t ≥ 0. Therefore,

|fz,σ(mn, t)− fz,σ(m, t)| ≤ σ2|mn −ml|
[
|z|
=(z)2

+

∣∣∣∣fz,σ(mn, t)

1 + σ2mn

∣∣∣∣ ∣∣∣∣ tfz,σ(ml, t)

1 + σ2ml

∣∣∣∣]
≤ σ2|mn −ml|

[
|z|
=(z)2

+
1

σ2δ=(z)2

∣∣∣∣ tfz,σ(ml, t)

1 + σ2ml

∣∣∣∣]
≤ σ2|mn −ml|

[
|z|
=(z)2

+
1

σ2δ=(z)2
∣∣1 + (1 + σ2ml)zfz,σ(ml, t)

∣∣]

≤ σ2|mn −ml|

 |z|
=(z)2

+
1

σ2δ=(z)2

1 +

(
1 + σ2

=(z)

)
|z|

=(z)


 .

Let us define E := {z ∈ C+ : <(z) ≤ 1,=(z) > η}, where η > 0 is sufficiently large such that from

the above we have

|fz,σ(mn, t)− fz,σ(m, t)| ≤ φ|mn −ml|, φ <
1

2
.(3.20)

Thus using the fact that mn =
∫
fz,σ(mn, t) dµRR∗/cn(t) + αn, we have ‖mn −ml‖2p ≤ 2φ‖mn −

ml‖2p + ‖αn‖2p + ‖αl‖2p. Since φ < 1/2 and ‖αk‖2p → 0 as k →∞, we have ‖mn −ml‖2p → 0 as

n, l →∞. Since L2p(Ω) is complete, there exits m : C+ → C such that ‖mn(z)−m(z)‖2p → 0 for

each z ∈ E. Thus for each z ∈ E, we can find a subsequence {mnk(z)}nk(z) such that mnk(z)(z)→

m(z) a.s.. Let {zi} ⊂ E be a sequence such that zi → z∗ ∈ E◦. Then we can construct a
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subsequence {mnj} such that mnj (zi) → m(zi) a.s. for all zi. Since |mn(z)| < 1
=(z) for all n, by

Vitali-Porter theorem, we may conclude that mnj (z) → m(z) a.s. and uniformly on the compact

sets of C+, where m(z) is an analytic function on C+ a.s..

Now, we show that the solution of (3.4) is unique. Suppose m1,m2 : C+ → C be two complex

analytic functions such that =(zm1) > 0 and =(zm2) > 0 and they satisfy (3.4). From (3.20), we

know that for sufficiently large =(z) > 0

|fz,σ(m1, t)− fz,σ(m2, t)| = φ|m1 −m2|, φ <
1

2

Therefore if both m1 and m2 satisfies (3.4), then we have |m1 − m2| ≤ 1
2 |m1 − m2| for z ∈ E.

Therefore m1 = m2 for z ∈ E. But since m1,m2 are analytic functions on C+, we have m1 = m2

on C+.

This completes the proof of the Theorem 3.1.4.

From the estimate (3.18), We see that if cn = nβ, where β > 1
2 + 1

2p , then
∑∞

n=1
np

c2pn
< ∞.

Therefore, by Borel-Cantelli lemma, we can conclude that 1
ntrB−1 −mn → 0 almost surely.

3.3. Proof of the Theorem 3.1.3

Proof of the Theorem 3.1.3 is exactly same as the proof of Theorem 3.1.4. We notice that

we obtained the bound O
(
np

c2pn

)
because of the proposition 3.6.1. Therefore, while estimating the

bounds of several components of equation (3.10), instead of using the proposition 3.6.1, we will use

the Proposition 3.6.3. And by doing so we can obtain that E
∣∣ 1
ntrB−1 −mn

∣∣2 = O(1/cn). Which

will conclude the Theorem 3.1.3.

To prove the almost sure convergence, we can truncate all the entries of the matrix X by

6
√

2
m log n. Let us denote that truncated matrix as X̃. Since xijs satisfy the Poincaré inequality,

from (3.3) we have

P (|xij | > t) ≤ 2K exp

(
−
√
m

2
t

)
.
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Therefore,

P
(
X 6= X̃

)
≤ 2Kn2 exp (−6 log n) ≤ K ′

n4
.

Now using the second part of Proposition 3.6.3 and following the same method as described in

Section 3.2, we have

E

[∣∣∣∣ 1ntrB−1 −mn

∣∣∣∣2l 1{X=X̃}

]
≤ K (log n)2l

cln
.

Since
∣∣ 1
ntrB−1

∣∣ , |mn| ≤ |=z|−1, we have

E

[∣∣∣∣ 1ntrB−1 −mn

∣∣∣∣2l
]
≤ K (log n)2l

cln
+

K

|=z|2ln4
.

If cn = nα, α > 0, then taking l large enough and using the Borel-Cantelli lemma we may conclude

the almost sure convergence.

3.4. Truncation of R

In several estimates, it was convenient when we have bounded rij . However, we can achieve

the same by properly truncating the random variables. Below we have described the truncation

method by following the same procedure as described in [DS07].

Let 1√
cn
R = USV be the singular value decomposition of R, where S = diag[s1, . . . , sn] are

the singular values of R and U , V are orthonormal matrices. Let us construct a diagonal matrix

Sα as Sα = diag[s11(s1 ≤ α), . . . , sn1(sn ≤ α)] and consider the matrices Rα = USαV , Yα =

1√
cn

(Rα + σX). Then by Lemma A.0.9 we have

‖µY Y ∗ − µYαY ∗α ‖ ≤
2

n
rank

(
R
√
cn
− Rα√

cn

)
=

2

n

n∑
i=1

1(si > α)

= 2H(α2,∞),
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If we take α2 →∞ for example α = log(cn) then ‖µY Y ∗−µYαY ∗α ‖ → 0. So without loss of generality,

we can assume that ‖rj‖2 ≤ ‖RR∗‖ ≤ cn log(cn). In that case, we have

‖rj‖2 = ‖rjr∗j‖ ≤ ‖RR∗‖ ≤ cn log(cn).

So using the estimates (3.12) and (3.14), we have

|ρ̂j | ≤ Kcn log(cn), |ρj | ≤ Kcn log(cn),

where K > 0 is a constant which depends only on the imaginary part of z. Similarly, all the

places in the proof of Theorem 3.1.4 we can replace the estimates |rjr∗j | ≤ Kcn by the estimates

|rjr∗j | ≤ Kcn log(cn).

3.5. Extension of the results to non-periodic band matrices

The result can easily be extended to non-periodic band matrices. We observe that for the

purpose of our proof, the main difference between a periodic and a non-periodic band matrix is the

number of elements in certain rows. In the case of a periodic band matrix the number of non-trivial

elements in any row is |Ij | = 2bn + 1 = cn which is fixed for any 1 ≤ j ≤ n. Therefore, in the

definition (3.9) we divide by cn. For a non-periodic band matrix |Ij | = bn + i1{i≤bn+1} + (bn +

1)1{bn+1<i<n−bn}(n+ 1− i)1{i≥n−bn} = O(bn). Once in the definition (3.9) and in the Proposition

3.6.1, Proposition 3.6.3 if we replace cn by |Ij |, everything works out as before.

3.6. Two concentration results

In this Section we list two main concentration results which are used in the proofs of the

Theorems 3.1.3, 3.1.4.

Proposition 3.6.1. Let M be one of C−1j , C−1j B−1j , and N be one of C−1j rjr
∗
jC
−1∗
j

or C−1j B−1j rjr
∗
jB
−1∗C−1∗j . Let xj be the jth column of X as defined in Theorem 3.1.4. Let us also

assume that E|x11|4l <∞. Then for any l ∈ N,

E
∣∣∣x∗jMxj −

cn
n

trM
∣∣∣2l ≤ Knl

E
∣∣∣x∗jNxj − cn

n
trN

∣∣∣2l ≤ Knl‖rjr∗j‖2l
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where K > 0 is a constant that depends on l, =(z), and the moments of xj, but not on n.

Proof. From the estimates (3.12) and (3.14) we know that ‖C−1j ‖ ≤ 1/|=(z)| and ‖B−1j ‖ ≤

1/|=(z)|. So, for convenience of writing the proof, let us assume that ‖M‖ ≤ 1 and ‖N‖ ≤ ‖rjr∗j‖.

Also without loss of generality, we can assume that j = 1, and recall the definition of Ij from (3.1).

We can write M = P + iQ, where P and Q are the real and imaginary parts of M respectively.

Then we can write

E
∣∣∣x∗jMxj −

cn
n

trM
∣∣∣2l ≤ 22l−1

∣∣∣x∗1Px1 − cn
n

trP
∣∣∣2l + 22l−1E

∣∣∣x∗1Qx1 − cn
n

trQ
∣∣∣2l .

We can write the first part as

∣∣∣x∗1Px1 − cn
n

trP
∣∣∣2l =

∣∣∣∣∣∣x∗1Px1 −
∑
k∈I1

Pkk +
∑
k∈I1

Pkk −
cn
n

trP

∣∣∣∣∣∣
2l

≤ 32l−1E

∑
k∈I1

(|x1k|2 − 1)Pkk

2l

+ 32l−1E

∑
i 6=j
i,j∈I1

Pijx1ix1j


2l

+ 32l−1

∣∣∣∣∣∣
∑
k∈I1

Pkk −
cn
n

trP

∣∣∣∣∣∣
2l

=: 32l−1(S1 + S2 + S3).

Following the same procedure as in [SB95], we can estimate the first part. Note that ‖Pm‖ ≤

‖P‖m ≤ ‖M‖m ≤ 1 for any m ∈ N. In the expansion of
[∑

k∈I1(|x1k|2 − 1)Pkk
]2l

, the maximum

contribution (in terms of cn) will come from the terms like

∑
k1,...,kl∈I1

(|x1k1 |2 − 1)2 · · · (|x1kl |
2 − 1)2(Pi1i1 · · ·Pilil)

2,

when all i1, . . . , il are distinct. Note that (Pi1i1 · · ·Pilil)2 ≤ 1. Consequently, expectation of the

above term is bounded by Kcln, where K depends only on the fourth moment of xij . Therefore,

S1 = E

∑
k∈I1

(|x1k|2 − 1)Pkk

2l

≤ Kcln,
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where K depends only on l and the moments of xij .

Since C−11 , C−11 B−11 , C−11 r1r
∗
1C
−1∗
1 or C−11 B−11 r1r

∗
1B
−1∗C−1∗1 are independent of x1, for the sec-

ond sum we have

∑
i1 6=j1,...,i2l 6=j2l
i1,j1,...,i2l,j2l∈I1

E[Pi1j1 · · ·Pi2lj2l ]E[x1i1x1j1 · · ·x1i2lx1j2l ].

The expectation will be zero if a term appears only once and the maximum contribution (in terms

of cn) will come from the case when each of x1j and x1j appears only twice. In that case, the

contribution is

∑
i1 6=j1
i1,j1∈I1

P 2
i1j1 · · ·

∑
il 6=jl
il,jl∈I1

P 2
iljl
≤ cln,

where the last inequality follows from the fact that
∑

i,j∈I1 P
2
ij = tr(LPLTLP TLT ) ≤ cn, where

Lcn×n is the projection matrix onto the co-ordinates indexed by I1. As a result, we have

S2 = E

∑
i 6=j
i,j∈I1

Pijx1ix1j


2l

≤ Kcln,

where K depends only on l and the moments of xij .

To estimate the S3, we can write it as

S3 =

∣∣∣∣∣∣
∑
k∈I1

Pkk −
cn
n

trP

∣∣∣∣∣∣
2l

= 22l−1

∣∣∣∣∣∣
∑
k∈I1

Pkk − E
∑
k∈I1

Pkk

∣∣∣∣∣∣
2l

+ 22l−1

∣∣∣∣∣∣E
∑
k∈I1

Pkk −
cn
n

trP

∣∣∣∣∣∣
2l

.

Since |Pkk−E[Pkk]| ≤ |(C−11 )kk−E[(C−11 )kk]|, from Lemma A.0.11 we have exponential tail bound

on ∣∣∑
k∈I1 Pkk − E

∑
k∈I1 Pkk

∣∣. As a result

E

∣∣∣∣∣∣
∑
k∈I1

Pkk − E
∑
k∈I1

Pkk

∣∣∣∣∣∣
2l

≤ Knl,(3.21)

where K depends only on l.
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Since xij are i.i.d., for any choice of M we have E[m11] = E[mii]. Which implies that

E[
∑

k∈I1 Pkk] = cn
n E[trP ]. Therefore, from Lemma A.0.11, we have∣∣∣∣∣∣E

∑
k∈I1

Pkk −
cn
n

trP

∣∣∣∣∣∣
2l

=
c2ln
n2l
|E[trP ]− trP |2l

≤ Kc2ln
nl
≤ Kcln,

where K depends only on l. Hence we have

S3 ≤ K(nl + cln).

Combining all the above estimates we have

E
∣∣∣x∗1Px1 − cn

n
trP
∣∣∣2l ≤ Knl

Repeating the above computation we can do the same estimate E
∣∣x∗1Qx1 − cn

n trQ
∣∣2l ≤ Knl. This

completes the proof.

�

Lemma 3.6.2 (Norm of a random band matrix). Let X be same as in the definitions (3.2), xij

satisfy the Poincaré inequality with constant m, and cn > (log n)2. Then E‖XX∗‖ ≤ Kc2n for some

universal constant K which may depend on the Poincaré constant m. In particular, if the limiting

ESD of 1
cn
RR∗ i.e., H is compactly supported then E‖Y Y ∗‖ ≤ Kcn.

Proof. We will follow the method described in [Tro15,MJC+14,Tro12] and the references

therein. The analysis becomes somewhat easier if we assume that all non-zero entries of X are

standard Gaussian random variables. However, the Gaussian case contains the main idea of the

analysis.
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Case I (xjk are standard Gaussian random variables): Using the Markov’s inequality, we have

P
(

1

cn
‖XX∗‖ > t

)
≤ e−tE

[
exp

(
1

cn
‖XX∗‖

)]
≤ e−tE

[
tr exp

(
1

cn
XX∗

)]
.

To estimate the right hand side, we will use the Lieb’s theorem [Lie73, Theorem 6]. Let H be

any n × n fixed Hermitian matrix. From Lieb’s theorem, we know that the function f(A) =

tr exp(H + logA) is a concave function on the convex cone of n × n positive definite Hermitian

matrices.

Let us write 1
cn
XX∗ =

∑n
k=1 xkx

∗
k, where xk is the kth column vector of X/

√
cn. Then using

the Lieb’s theorem and Jensen’s inequality, we have

E
[

tr exp

(
1

cn
XX∗

)∣∣∣∣x1, . . . , xn−1] = E

[
tr exp

(
1

cn

n−1∑
k=1

xkx
∗
k + log exp

(
1

cn
xnx

∗
n

))∣∣∣∣∣x1, . . . , xn−1
]

≤ tr exp

[
1

cn

n−1∑
k=1

xkx
∗
k + logE exp

(
1

cn
xnx

∗
n

)]
.

Proceeding in this way, we obtain

E
[
tr exp

(
1

cn
XX∗

)]
≤ tr exp

[
n∑
k=1

logE exp

(
1

cn
xkx

∗
k

)]
.

Therefore,

P
(

1

cn
‖XX∗‖ > t

)
≤ e−ttr exp

[
n∑
k=1

logE exp

(
1

cn
xkx

∗
k

)]
.(3.22)

It is easy to see that

exp

(
1

cn
xkx

∗
k

)
= I +

( ∞∑
l=1

1

l!cln
‖xk‖2(l−1)

)
xkx

∗
k

= I +
e‖xk‖

2/cn − 1

‖xk‖2
xkx

∗
k

� I +
1

cn
e‖xk‖

2/cnxkx
∗
k,
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where A � B denotes that (B−A) is positive semi-definite. Since {xjk}1≤k≤n, j∈I′k are independent

standard Gaussian random variables, we have

E
[
e‖xk‖

2/cnxjkx̄lk

]
= 0, if j 6= l

E
[
e‖xk‖

2/cn |xjk|2
]

=

(
1− 1

cn

)−(cn+1)

As a result,

tr exp

[
n∑
k=1

logE exp

(
1

cn
xkx

∗
k

)]
≤ n

(
1 +

e

cn

)cn
Substituting this estimate in (3.22), we have

P
(

1

cn
‖XX∗‖ > t+ log n

)
≤ eene−(t+logn) = eee−t.(3.23)

As a result,

1

cn
E[‖XX∗‖] =

∫ ∞
0

P
(

1

cn
‖XX∗‖ > u

)
du

≤
∫ logn

0
du+

∫ ∞
0

P
(

1

cn
‖XX∗‖ > t+ log n

)
dt

≤ log n+ ee ≤ Kcn.

This completes the proof.

Case II (xjks satisfy the Poincaré inequality): First of all, let us write the random matrix X

as X = X1 + iX2, where X1 and X2 are the real and imaginary parts of X respectively. Since

‖X‖ ≤ ‖X1‖+ ‖X2‖, it is enough to estimate ‖X1‖ and ‖X2‖ separately. In other words, without

loss of generality, we can assume that xij are real valued random variables.

Let us construct the matrix

X̃ =

 O X

X O

 .
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It is easy to see that ‖X̃‖ = ‖X‖. Therefore, it is enough to bound E‖X̃‖2.

We can write X̃ as

X̃ =
n∑
i=1

∑
j∈Ii

xij(Ei,n+j + En+j,i),

where Eij is a 2n× 2n matrix with all 0 entries except 1 at the (i, j)th position. Proceeding in the

same way as case I, we may write

P
(

1
√
cn
‖X̃‖ > t

)
≤ e−ttr exp

 n∑
i=1

∑
j∈Ii

logE exp

(
1
√
cn
xij(Ei,n+j + En+j,i)

) .(3.24)

Let us consider the 2× 2 matrix H =

 0 γ

γ 0

, where γ is a real valued random variable. We

can decompose H as

H =
1

2

 1 1

1 −1

 γ 0

0 −γ

 1 1

1 −1

 .
As a result,

exp(H) =
1

2

 1 1

1 −1

 eγ 0

0 e−γ

 1 1

1 −1

 .
Therefore,

logE[exp(H)] =
1

2

 1 1

1 −1

 logEeγ 0

0 logEe−γ

 1 1

1 −1


=

1

2

 log[EeγEe−γ ] log[Eeγ/Ee−γ ]

log[Eeγ/Ee−γ ] log[EeγEe−γ ]

 .
Since xijs are i.i.d., let us assume that all xij have the same probability distribution as a real valued

random variable γ. Then proceeding as above, we can see that

logE exp

(
1
√
cn
xij(Ei,n+j + En+j,i)

)
=

1

2
log[Eeγ/

√
cnEe−γ/

√
cn ](Eii + En+j,n+j)
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+
1

2
log[Eeγ/

√
cn/Ee−γ/

√
cn ](Ei,n+j + En+j,i).

Therefore,

n∑
i=1

∑
j∈Ii

logE exp

(
1
√
cn
xij(Ei,n+j + En+j,i)

)
=
cn
2

log[Eeγ/
√
cnEe−γ/

√
cn ] I

+
1

2
log[Eeγ/

√
cn/Ee−γ/

√
cn ]

n∑
i=1

∑
j∈Ii

(Ei,j+n + Ej+n,i).

From the Golden–Thompson inequality, if A and B are two d× d real symmetric matrices then

treA+B ≤ tr(eAeB).

In our case, let us take

A =
cn
2

log[Eeγ/
√
cnEe−γ/

√
cn ] I

B =
1

2
log[Eeγ/

√
cn/Ee−γ/

√
cn ]

n∑
i=1

∑
j∈Ii

(Ei,j+n + Ej+n,i).

Then

eA = [Eeγ/
√
cnEe−γ/

√
cn ]cn/2 I.

tr exp

 n∑
i=1

∑
j∈Ii

logE exp

(
1
√
cn
xij(Ei,n+j + En+j,i)

)
≤ tr

[{
[Eeγ/

√
cnEe−γ/

√
cn ]ncn/2

}
eB
]

≤
{

[Eeγ/
√
cnEe−γ/

√
cn ]ncn/2

}
ne‖B‖.

It is not difficult to see that
∥∥∥∑n

i=1

∑
j∈Ii(Ei,j+n + Ej+n,i)

∥∥∥ ≤ cn. Combining all the estimates

and plugging them in (3.24) we obtain

P
(

1
√
cn
‖X̃‖ > t

)
≤ ne−t[Eeγ/

√
cnEe−γ/

√
cn ]cn/2[Eeγ/

√
cn/Ee−γ/

√
cn ]cn/2

= ne−t
{
Eeγ/

√
cn
}cn

.
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3.6. TWO CONCENTRATION RESULTS

From the concentration estimate (3.3) we have that P(|γ| > t) ≤ exp{−t
√
m/
√

2}

E[eγ/
√
cn ] =

∫ ∞
0

P
(

γ
√
cn

> log t

)
dt

≤
∫ 1

0
P (γ >

√
cn log t) dt+

∫ ∞
1

P (γ >
√
cn log t) dt

≤ 1 +

∫ ∞
1

t−
√
mcn/

√
2 dt

= 1 +

(√
mcn

2
− 1

)−1
.

As a result,

P
(

1
√
cn
‖X̃‖ > t

)
≤ ne−te

√
2cn/

√
m.

Therefore,

1

cn
E‖X̃‖2 ≤ (log n+

√
2cn/
√
m)2 ≤ Kcn.

�

Proposition 3.6.3. Let M be one of C−1j , C−1j B−1j , C−1j rjr
∗
jC
−1∗
j or C−1j B−1j rjr

∗
jB
−1∗C−1∗j ,

and xj be the jth column of X. In addition, let us also assume that the random variables xij satisfy

the Poincaré inequality with constant m, and cn > (log n)2. Then we have

E
∣∣∣x∗jMxj −

cn
n

trM
∣∣∣2 ≤ Kcn,

where K > 0 is a constant depends on =(z), σ, and the Poincaré constant m. Moreover if the

entries of of the matrix X are bounded by 6
√

2
m log n, then

E
∣∣∣x∗jMxj −

cn
n

trM
∣∣∣2l ≤ Kcln(log n)2l,

K > 0 depends on l, =(z), σ, and the Poincaré constant m.

Proof. Let us first prove this for M = C−1j = (Y Y ∗ − yjy∗j − zI)−1. Since xij satisfy the

Poincaré inequality, they have exponential tails and consequently they have all moments. As a

result we can repeat the same proof of Proposition 3.6.1. However, notice that in Proposition 3.6.1
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we are getting the order nl instead of cln solely because of the estimate (3.21). So, it boils down to

obtain an estimate of O(cn) for (3.21) when xij satisfy Poincaré inequality.

Since xij satisfy the Poincaré inequality we can write

Var

∑
p∈Ij

Mpp

 ≤ 1

κ

∑
s,t

E

∣∣∣∣∣∣
∑
p∈Ij

∂Mpp

∂xst

∣∣∣∣∣∣
2

+
1

κ

∑
s,t

E

∣∣∣∣∣∣
∑
p∈Ij

∂Mpp

∂x̄st

∣∣∣∣∣∣
2

,

where κ > 0 is the constant of Poincaré inequality. Let mkl :=
∑

i 6=j ykiȳli = 1
cn

∑
i 6=j(rki +

σxki)(r̄li + σx̄li) be the klth entry of Y Y ∗ − yjyj . It is very easy to compute, and done in the

literature in past [JSS16, and references therein], that

∂Mpp

∂mkl
= − 1

1 + δkl
[MpkMlp +MplMkp] = − 2

1 + δkl
MkpMpl.

Now it is easy to see that

∂mkl

∂x̄st
=

σ

cn

∑
i 6=j

δksδit(rli + σxli) =
σ

cn
δks(rlt + σxlt)1{t6=j}.

Consequently,

∑
p∈Ij

∂Mpp

∂x̄st
= − σ

cn

∑
p∈Ij

∑
k,l

2δks
1 + δkl

MkpMpl[rlt + σxlt]1{t6=j}

= − σ
cn

∑
p∈Ij

∑
l

2

1 + δsl
MspMpl[rlt + σxlt]1{t6=j}

= − σ
cn

∑
l

(M̃j)sl[rlt + σxlt]1{t6=j}

= − σ
√
cn

(M̃jYj)st,

where (M̃j)sl = 1
1+δsl

∑
p∈Ij MspMpl, and Yj is the matrix Y with jth column replaced by zeros.

Let us construct a matrix (M̂j)n×cn fromM by removing all the columns except the ones indexed

by Ij . For example, M̂1 is the matrix obtained from M by removing (n − cn) (i.e., n − 2bn − 1)

many columns of M indexed by bn+2, bn+3, . . . , n− (bn+1). Clearly M̃j = M̂jM̂
T
j (the diagonals
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are divided by 2). Therefore, rank(M̃j) ≤ cn. As a result

∑
s,t

E

∣∣∣∣∣∣
∑
p∈Ij

∂Mpp

∂x̄st

∣∣∣∣∣∣
2

≤ σ2

cn
Etr(M̃jYjY

∗
j M̃

∗
j ) ≤ σ2E[‖M̃j‖2‖YjY ∗j ‖] ≤

σ2

|=(z)|4
E[‖YjY ∗j ‖],(3.25)

where in the last inequality we have used the fact that ‖M̂j‖ ≤ 1/|=(z)|. Consequently using

the Lemma 3.6.2, we have

∑
s,t

E

∣∣∣∣∣∣
∑
p∈Ij

∂Mpp

∂x̄st

∣∣∣∣∣∣
2

≤ Kcn

Repeating the above calculations for
∑

s,t E
∣∣∣∑p∈Ij

∂Mpp

∂xst

∣∣∣2 we can obtain the same bounds. Hence

the result follows for M = C−1j .

Since ‖B−1j ‖ ≤ 1/|=(z)| and ‖rjr∗j‖ ≤ Kcn, the result follows for C−1j B−1j , C−1j rjr
∗
jC
−1∗
j ,

C−1j B−1j rjr
∗
jB
−1∗C−1∗j too.

To prove the second part, we invoke the equation (3.3). Using (3.3), we have

P

∣∣∣∣∣∣
∑
k∈Ij

Mkk − E
∑
k∈Ij

Mkk

∣∣∣∣∣∣ > t

 ≤ 2K exp

(
−

√
m√

2‖‖∇
∑

k∈Ij Mkk‖2‖∞
t

)
.

From the equation (3.25), we have∥∥∥∥∥∥∇
∑
k∈Ij

Mkk

∥∥∥∥∥∥
2

2

≤ 2σ2

|=z|4
‖YjY ∗j ‖.

Since all the entries of X are bounded by 6
√

2
m log n, we have‖XX∗‖ ≤ Kc2n(log n)2. And we know

that ‖RR∗‖ ≤ Kcn for large n. Therefore, ‖Y Y ∗‖ ≤ Kcn(log n)2. We can get the same bound for

‖YjY ∗j ‖. As a result,

P

∣∣∣∣∣∣
∑
k∈Ij

Mkk − E
∑
k∈Ij

Mkk

∣∣∣∣∣∣ > t

 ≤ 2K exp

(
−

√
m

K ′
√

2cn log n
t

)
.
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Which implies that ∣∣∣∣∣∣
∑
k∈Ij

Mkk − E
∑
k∈Ij

Mkk

∣∣∣∣∣∣
2l

≤ Kcln(log n)2l.

Plugging this in (3.21), and following the same procedure as in Proposition 3.6.1, we have the

result.

Observe that the second result of this Proposition is somewhat stronger than the first result, as

it leads to the almost sure convergence (see Section 3.3) and it does not need the help of Lemma

3.6.2. However, the method used in Lemma 3.6.2 is interesting by itself. So we keep it. �
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CHAPTER 4

Other Related Problems

In the Chapter 1, we have discussed about the limiting spectral distribution of Wigner random

matrices and Hermitian random band matrices with i.i.d. entries. In both the cases, it turned

out to be the Semicircle law. In this Chapter, we will briefly discuss about the limiting spectral

distribution of random matrices with correlated entries.

4.1. Elliptic Law

4.1.1. Full Matrices. The Semicircle law holds for symmetric or Hermitian random matrices.

However, if the ijth and jith entries of a random band matrix are correlated but not identically

equal then the limiting spectral distribution of those matrices is no longer the Semicircle law. In

2014, Nguyen, and O’Rourke [NO14] proved the following result.

Theorem 4.1.1. Let X = (xij)n×n be a sequence of n× n random matrices such that

(i) (xij , xji) are i.i.d. random vectors, and xii are i.i.d. random variables with mean zero and

finite variance.

(ii) E[x12] = 0 = E[x21], E[|x12|2] = 1 = E[|x21|2],

(iii) E[<(x12)
2] = µ = E[<(x21)

2], E[=(x12)
2] = 1− µ = E[=(x21)

2],

(iv) E[<(x12)<(x21)] = µρ, E[=(x12)=(x21)] = −(1− µ)ρ,

(v) E[<(x12)=(x21)] = 0 = E[=(x12)<(x21)].

Let 0 ≤ µ ≤ 1 and −1 < ρ < 1 be given, and F be a sequence of deterministic matrices with

rank(F ) = o(n) and supn
1
n2 tr(FF ∗) < ∞. Then the ESD of 1√

n
(X + F ) converges almost surely

to the elliptic law with parameter ρ, which is given by the following pdf

Eρ(z) =

 1 if <(z)
2

(1+ρ)2
+ =(z)2

(1−ρ)2 ≤ 1,

0 otherwise.
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In 2012, Naumov [Nau12] proved the above result under finite fourth moment assumption and

for µ = 1 i.e., for the real valued random matrices. Also in 1985, Girko [Gir86] proved this result

for real valued random matrices under the assumption that the entries have probability density

functions.

4.1.2. Band Matrices. In case of random band matrices, the Elliptic law seems to be true.

Let X = (xij)n×n be a random band matrix with bandwidth bn. Let E[xij ] = 0 = E[xji], E[|xij |2] =

1 = E[|xji|2], and E[xijxji] = ρ for all i 6= j and min{|i− j|, n− |i− j|} ≤ bn. In the figure 4.1, we

have done some numerical simulations with random band matrices with different bandwidths and

(xij , xji)
i.i.d∼ N2(0, ρ), where N2 denotes the standard bivariate Gaussian random variables with

correlation coefficient ρ. We suspect that when the bandwidth bn >>
√
n, the elliptic law is true

for random band matrices. But when bn <<
√
n, there are significantly many real eigenvalues.

However, the nonreal eigenvalues still follow the elliptic law. The figures shown in 4.1 are for

periodic band matrices. Corresponding figures for non-periodic band matrices look the same and

are not included here.

4.2. Localization-delocalization of the eigenvectors

It was proposed by Casati, Molinari, and Izrailev [CMI90] that the eigenvectors of a random

band matrix of bandwidth bn are localized if bn <<
√
n and delocalized otherwise. Here local-

ization indicates the the number of contributing components in an eigenvector. For example, the

eigenvectors of a diagonal matrix is highly localized. Because the main contribution of such vectors

come only from one component. On the other hand, if all components of a vector are the same

then the vector is highly delocalized. It was proved by Schenker [Sch09] that the eigenvectors are

localized if bn << n1/8, and Erdös et al. [EKYY13] proved that eigenvectors are delocalized when

the bandwidth bn >> n4/5. Recently, Olver and Swan [OS17] have found that a second order

phase transition of localization-delocalization occurs at bn � 2
5N .

We have done some MATLAB simulations to see the behavior of the eigenvector of band

matrices of several bandwidths. we took a n×n band matrix of different bandwidths. For example,

let us say the band width is n0.3. Then we looked at the normalized eigen vectors of that matrix.

For each eigenvector we counted the number of components whose absolute values are more than
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(a) Bandwidth (bn) = n0.3, Covariance (ρ) = 0.
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(ρ) = 0.4.
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(c) Bandwidth (bn) = n0.5, Covariance (ρ) = 0.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

(d) Bandwidth (bn) = n0.5, Covariance
(ρ) = 0.4.
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(e) Bandwidth (bn) = n0.7, Covariance (ρ) = 0.
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(f) Bandwidth (bn) = n0.7, Covariance
(ρ) = 0.4.

Figure 4.1. ESDs of random band matrices with size 4000× 4000.

1
nerror . If less than n

2 components are bigger than 1
nerror , then we call that eigenvector is localized.

Figure 4.2 shows some such simulations.
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(a) 6th eigenvector; localized
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(b) 1200th eigenvector; delocalized
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(d) 2970th eigenvector; localized

Figure 4.2. 3000× 3000 band matrix of bandwidth 30000.4.

The simulations show even some more interesting facts. It seems that the eigenvectors cor-

responding to the extreme (smallest or largest) eigenvalues tend to be more localized than the

eigenvectors corresponding to the bulk eigenvalues. For example, we looked at the eigenvectors

of a 3000 × 3000 random band matrix with varying bandwidth and with i.i.d. standard Gaussian

entries. Let M be a n × n random band matrix with band width nd and with i.i.d. standard

Gaussian entries. It has n many eigenvectors. I mark a vector by a colored dot if it is found to

be localized with respect to the error threshold 1/nerror. In the figure 4.3, d is plotted along the

x-axis and the localized eigenvectors corresponding to the random band matrix of bandwidth nd

is plotted along the y-axis. The error threshold in the following figures are respectively 1
n , 1

n2 , 1
n3

and 1
n4 . It is clear that all the eigenvectors are localized up to certain bandwidth (around n0.35 in

the first figure). Then the eigenvectors corresponding to the bulk eigenvalues start delocalizing.
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(b) Error threshold= 1
n2
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(c) Error threshold= 1
n3
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(d) Error threshold= 1
n4

Figure 4.3. The colored dots indicate the localized eigenvectors.
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APPENDIX A

Auxiliary Results

Proof of Proposition 2.2.2: Let us denote the averaging with respect to {wij ; 1 ≤ i ≤

k or 1 ≤ j ≤ n} by E≤k and the averaging with respect to {wkj ; 1 ≤ j ≤ n} by Ek. Using the

martingale difference technique (see [DFJ68]), we have

Var{γn} ≤
n∑
k=1

E
[
|E≤k−1[γn]− E≤k[γn]|2

]

=

n∑
k=1

E
[
|E≤k−1 [γn − E≤k[γn]]|2

]

≤
n∑
k=1

E
[
E≤k−1 |γn − Ek[γn]|2

]

=

n∑
k=1

E
[
|γn − Ek[γn]|2

]
.

Note that

E
[
|γn − E1[γn]|2

]
= E

[
|Tr(G)− E1[Tr(G)]|2

]
= E

[∣∣∣Tr(G)− E1[Tr(G)] + Tr(G(1))− Tr(G(1))
∣∣∣2]

= E
[∣∣∣Tr(G−G(1))− E1

[
Tr(G−G(1))

]∣∣∣2] .
From (A.3) we have

Tr(G−G(1)) = −1 +B(z)

A(z)
(A.1)
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where A(z) = −G−111 , B(z) =
〈
G(1)G(1)m(1),m(1)

〉
, and G(1) is defined in (2.16), and m(1) =

1√
bn

(w12, w13, . . . , w1n)T . Indeed,

E
[
|γn − E1[γn]|2

]
≤ E

[∣∣∣∣1 +B(z)

A(z)
− E1

[
1 +B(z)

A(z)

]∣∣∣∣2
]

≤ 2E

[∣∣∣∣ 1

A(z)
− E1

[
1

A(z)

]∣∣∣∣2
]

+ 2E

[∣∣∣∣B(z)

A(z)
− E1

[
B(z)

A(z)

]∣∣∣∣2
]
.

Now, by (2.21) and (2.25),

E1

[∣∣∣∣B(z)

A(z)
− E1

[
B(z)

A(z)

]∣∣∣∣2
]
≤ E1

[∣∣∣∣B(z)

A(z)
− E1[B(z)]

E1[A(z)]

∣∣∣∣2
]

≤ E1

[∣∣∣∣ B◦1
E1[A]

− A◦1
E1[A]

B

A

∣∣∣∣2
]

≤ 2E1

[∣∣∣∣ B◦1
E1[A]

∣∣∣∣2
]

+
2

|=z|2
E1

[∣∣∣∣ A◦1
E1[A]

∣∣∣∣2
]
,

where A◦1 = A− E1[A]. So it is enough to estimate E1

[∣∣∣ A◦1
E1[A]

∣∣∣2] and E1

[∣∣∣ B◦1
E1[A]

∣∣∣2]. Note that

A = z − 1√
bn
w11 +

〈
G(1)m(1),m(1)

〉
A◦1 = − 1√

bn
w11 +

1

bn

∑
i 6=j
i,j∈I1

G
(1)
ij w1iw1j +

1

bn

∑
i∈I1

G
(1)
ii (w2

1i)
◦.

Therefore,

E1

[
|A◦1|

2
]

= E1

 1

bn
w2
11 +

1

b2n

∑
i6=j
i,j∈I1

G
(1)
ij w1iw1j

∑
k 6=l
k,l∈I1

G
(1)
kl w1kw1l +

1

b2n

∑
i∈I1

G
(1)
ii (w2

1i)
◦
∑
l∈I1

G
(1)
ll (w2

1l)
◦


=
σ2

bn
+

2

b2n

∑
i 6=j
i,j∈I1

|G(1)
ij |

2 +
µ4 − 1

b2n

∑
i∈I1

|G(1)
ii |

2

≤ σ2

bn
+

2

b2n

2bn
|=z|2

+
µ4 − 1

b2n

2bn
|=z|2

≤ 1

bn

(
σ2 +

2 + 2µ4
|=z|2

)
.(A.2)

56



Now, we want to estimate E1

[
|B◦1 |

2
]
, where B =

〈
G(1)G(1)m(1),m(1)

〉
=
〈
H(1)m(1),m(1)

〉
, and

B◦1 = B − E1[B]. Therefore,

E1[B] =
1

bn

∑
i∈I1

H
(1)
ii =

1

bn

∑
i∈I1

n∑
j=2

(
G

(1)
ij

)2
,

and

B◦1 =
1

bn

∑
i6=j
i,j∈I1

H
(1)
ij w1iw1j +

1

bn

∑
i∈I1

H
(1)
ii

(
w2
1i

)◦
.

Let us call C0 = E
[
(w2

1i)
◦]2. Then

E1[|B◦1 |2] =
1

b2n

∑
i 6=j
i,j∈I1

|H(1)
ij |

2 +
C0

b2n

∑
i∈I1

|H(1)
ii |

2

=
1

b2n

∑
i 6=j
i,j∈I1

∣∣∣∣∣
n∑
k=2

G
(1)
ik G

(1)
kj

∣∣∣∣∣
2

+
C0

b2n

∑
i∈I1

∣∣∣∣∣
n∑
k=2

G
(1)
ik G

(1)
ki

∣∣∣∣∣
2

≤ 1

b2n

∑
i∈I1

‖(G(1))2‖2 +
C0

b2n
2bn‖(G(1))2‖2

=
2

bn

1

|=z|4
+

2C0

bn

1

|=z|4

=
2(1 + C0)

bn|=z|4
.

We also have

E

[∣∣∣∣ 1

A(z)
− E1

[
1

A(z)

]∣∣∣∣2
]
≤ 1

|=z|2
E

[∣∣∣∣ A◦1
E1[A]

∣∣∣∣2
]

Note that E1[A] = z+ 1
bn

∑
i∈I1 G

(1)
ii . Since =G(1)

ii > 0, we have |E1[A]| ≥ |=A| ≥ y. Also, we know

that |G(1)
ii | ≤ 1/|=z| = 1/y. Therefore |E1[A]| ≥ |x| − 2

y . Combining these we have

|E1[A]| > max

{
y, |x| − 2

y

}
.
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Therefore,

E
[
|γn − E1[γn]|2

]
≤ C1

2(1 + C0)

bn|=z|4
|E1[A]|−2 +

C2

bn

(
σ2 +

2 + 2µ4
|=z|2

)
|E1[A]|−2

|=z|2

≤ C

bn

(
1

|=z|2
+

1

|=z|4

)
|E1[A]|−2,

for some C1, C2, C > 0 not depending on z, n. This implies

Var(γn) ≤ Cn

bn

(
1

|=z|2
+

1

|=z|4

)(
max

{
y, |x| − 2

y

})−2
.

This completes the proof of proposition 2.2.2. �

Now, we proceed to the proofs of the asymptotic estimates. All the asymptotic estimates listed

in Lemma A.0.1 and Lemma A.0.2 hold uniformly in the set {z ∈ C : |=z| ≥ η} for any given η > 0.

Lemma A.0.1. Let M be an n × n symmetric band matrix as defined in (2.2) which satisfies

(2.3) and E[|wij |8] is uniformly bounded. Then

(i)

(A.3) G
(1)
ii −Gii =

1

A(z)

(
G(1)m(1)

)2
i

=
1

A(z)

 1√
bn

∑
j∈I1

G
(1)
ij w1j

2

where 2 ≤ i ≤ n, A(z), m(1) and G(1) are as defined in (2.14), (2.15) and (2.16).

(ii)
∣∣∣E [G(1)

ii (z)
]
− E[Gii(z)]

∣∣∣ = O

(
1

bn

)
.

(iii)

(A.4) E[|G12|2] = O

(
1

bn

)
1

|=z|6
, E[|G12|4] = O

(
1

b2n

)
1

|=z|12
and E[|G12|8] = O

(
1

b4n

)
1

|=z|24
.

(iv) Let us denote the averaging with respect to {w1i}1≤i≤n by E1. Then

(A.5)

bnE1 [A◦(z1)A
◦(z2)] = σ2+

2

bn

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2)+

κ4
bn

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2)+

1

bn
γ̃n−1(z1)γ̃n−1(z2)

where γ̃n−1(z) =
∑

i∈I1

(
G

(1)
ii − E[G

(1)
ii (z)]

)
and I1 = {1 < i ≤ n : (1, i) ∈ In}.
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(v)

(A.6) E1 [A◦(z1)B
◦(z2)] =

d

dz2
E1 [A◦(z1)A

◦(z2)] where B(z2) =
〈
G(1)(z2)G

(1)(z2)m
(1),m(1)

〉
.

Lemma A.0.2. Let M be an n × n symmetric band matrix as defined in (2.2) which satisfies

(2.3). Also assume that the probability distribution of wjk satisfies the Poincaré inequality with

some uniform constant m which does not depend on n, j, k. Then

(i)

(A.7) Var
( ∑

(1,i)∈In

Gii

)
= O(1) and Var(G11(z)) = O

(
1

bn

)
.

(ii)

E
[
|A◦|4

]
= O

(
1

b2n

)
, E

[
|A◦|3

]
= O

(
1

b
3/2
n

)
(A.8)

E
[
|B◦|4

]
= O

(
1

b2n

)
(A.9)

(iii)

(A.10) Var {bnE1 [A◦(z1)A
◦(z2)]} = O

(
1

bn

)
and Var {bnE1 [A◦(z1)B

◦(z2)]} = O

(
1

bn

)
(iv)

E
[∣∣γ◦n−1(z)− γ◦n(z)

∣∣4] = O

(
1

b2n

)
and E

[
|γ◦n|

4
]

= O

(
n2

b2n

)
.(A.11)

(v)

(A.12)
1

n
E [TrG(z)] = f(z) +O

(
1

|=z|6bn

)
where f(z) =

1

4

(
−z +

√
z2 − 8

)
.

(vi)

(A.13) (E[A(z)])−1 = −f(z) +O(b−1n ) and E[B(z)] = 2f ′(z) +O(b−1n ).

Proof of Lemma A.0.1: Proof of (i): Suppose (X1, X2, . . . , Xn) is a n dimensional normal

random vector with a positive definite covariance matrix A−1 and a mean A−1h, where h ∈ Rn.
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Then we have ∫
exp

[
−1

2
〈Ax, x〉+ 〈h, x〉

]
dx = (2π)n/2|detA|−1/2 exp

[
1

2
〈A−1h, h〉

]
,(A.14) ∫

xixj exp
[
−1

2〈Ax, x〉+ 〈h, x〉
]
dx∫

exp
[
−1

2〈Ax, x〉+ 〈h, x〉
]
dx

= (A−1)ij + (A−1h)i(A
−1h)j .(A.15)

where x = (x1, x2, . . . , xn)T . In particular, for h = 0,

(A−1)ij =

∫
xixj exp[−1

2〈Ax, x〉] dx∫
exp[−1

2〈Ax, x〉] dx
.(A.16)

Now, doing the integrations in (A.16) with respect to all variables except x1, and using (A.14) we

get ∫
exp[−1

2
〈Ax, x〉] dx =

∫
exp[−a11x

2
1

2
]

∫
exp[−1

2
〈A1x

(1), x(1)〉 − 〈x1a1, x(1)〉] dx

=
(2π)

n−1
2

|detA1|1/2

∫
exp[−x

2
1

2
(a11 − 〈A−11 a1, a1〉)] dx1

where x(1) = (x2, x3, . . . , xn)T , a1 = (a12, a13, . . . , a1n)T and A1 = ((A1)ij)
n
i,j=2 is the (n−1)×(n−1)

matrix obtained from A after removing first row and first column, and for i, j 6= 1, using (A.15)

and (A.14) we get∫
xixj exp[−1

2
〈Ax, x〉] dx

=

∫
exp[−a11x

2
1

2
]

∫
xixj exp[−1

2
〈A1x

(1), x(1)〉 − 〈x1a1, x(1)〉] dx(1)dx1

=

∫
exp[−a11x

2
1

2
] [(A−11 )ij + x21(A

−1
1 a1)i(A

−1
1 a1)j ]

∫
exp[−1

2
〈A1x

(1), x(1)〉 − 〈x1a1, x(1)〉] dx(1)dx1

=
(2π)

n−1
2

| detA1|1/2

∫
[(A−11 )ij + x21(A

−1
1 a1)i(A

−1
1 a1)j ] exp[−x

2
1

2
(a11 − 〈A−11 a1, a1〉)] dx1.

Therefore, from (A.16) we get

(A−1)ij = (A−11 )ij + (A−11 a1)i(A
−1
1 a1)j

∫
x21 exp[−x21

2 (a11 − 〈A−11 a1, a1〉)] dx1∫
exp[−x21

2 (a11 − 〈A−11 a1, a1〉)] dx1

= (A−11 )ij +
(A−11 a1)i(A

−1
1 a1)j

a11 − 〈A−11 a1, a1〉
.
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Applying the above formula for A = (M − zI), where z ∈ R, |z| > ‖M‖, we obtain

Gij = G
(1)
ij +

(G(1)m(1))i(G
(1)m(1))j

w11√
bn
− z − 〈G(1)m(1),m(1)〉

, i, j ≥ 2,

where m(1), G(1) are as defined in (2.15), (2.16) respectively. From the above formula we obtain

Gii −G(1)
ii = −(G(1)m(1))2i

A(z)
, for all 2 ≤ i ≤ n,

where A(z) is as defined in (2.14). The above is true for all z ∈ R such that |z| > ‖M‖. By analytic

continuity one can extend it to the whole complex plane. This completes the proof.

Proof of (ii): Recall I1 = {1 < i ≤ n : (1, i) ∈ In}. Now, using (A.3) and (2.21) we have∣∣∣E [G(1)
ii (z)

]
− E[Gii(z)]

∣∣∣ =

∣∣∣∣E [ 1

A

(
G(1)m(1)

)2
i

]∣∣∣∣
=

∣∣∣∣∣∣E
 1

A

 1√
bn

∑
j∈I1

G
(1)
ij w1j

2∣∣∣∣∣∣
≤ 1

bn

1

|=z|
E

∣∣∣∣∣∣
∑
j∈I1

G
(1)
ij w1j

∣∣∣∣∣∣
2

≤ 1

bn|=z|
E

∑
j∈I1

|G(1)
ij |

2w2
1j +

∑
j1 6=j2∈I1

G
(1)
ij1
G

(1)
ij2
w1j1w1j2


=

1

bn|=z|
EE1

∑
j∈I1

|G(1)
ij |

2w2
1j +

∑
j1 6=j2∈I1

G
(1)
ij1
G

(1)
ij2
w1j1w1j2


=

1

bn|=z|
E

∑
j∈I1

|G(1)
1j |

2


≤ 1

bn|=z|
E‖G(1)‖2 ≤ 1

bn|=z|3
.

Proof of (iii): Using the resolvent formula given in [Erd11], we have

G12 = −G22G
(2)
11 K

(12)
12 ,
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where G(2) is the resolvent of the (n − 1) × (n − 1) minor obtained by removing the kth row and

kth column from the matrix M , K
(12)
12 = m12 − m(1)G

(12)m(2), m(1) = 1√
bn

(w13, w14, . . . , w1n),

m(2) = 1√
bn

(w23, w24, . . . , w2n)T , G(ij) =
(
M (ij) − zI

)−1
, and M (ij) is (n − 2) × (n − 2) matrix

obtained from M after removing ith and jth rows and columns. Therefore,

E[|G12|2] = E
[∣∣∣G22G

(2)
11 K

(12)
12

∣∣∣2]
≤ 1

|=z|2
1

|=z|2
E
[∣∣∣m12 −m(1)G

(12)m(2)

∣∣∣2]

=
1

|=z|4
E


∣∣∣∣∣∣∣∣
w12√
bn
− 1

bn

∑
(1,i),(2,j)∈In
i,j 6=1,2

G
(12)
ij w1iw2j

∣∣∣∣∣∣∣∣
2

≤ 1

|=z|4
EE≤2

w2
12

bn
+

1

b2n

∑
(1,i),(2,j)∈In
i,j 6=1,2

|G(12)
ij |

2w2
1iw

2
2j


≤ 1

|=z|4
E

 1

bn
+

1

b2n

∑
i,j

|G(12)
ij |

2E≤2[w2
1i]E≤2[w2

2j ]


≤ 1

|=z|4
E
[

1

bn
+

1

b2n

bn
|=z|2

]
= O

(
1

bn

)
1

|=z|6
,

where E≤2 is the averaging with respect to the first two rows and columns. Similarly, we can prove

that E[|G12|4] = O
(

1
b2n

)
1

|=z|12 , and E[|G12|8] = O
(

1
b4n

)
1

|=z|24 .

Proof of (iv): We know that

A(z1) = z1 −
w11√
bn

+
〈
G(1)m(1),m(1)

〉
,

and A◦(z1) = − w11√
bn

+
1

bn

∑
i 6=j∈I1

G
(1)
ij w1iw1j +

1

bn

∑
i∈I1

G
(1)
ii w

2
1i −

1

bn

∑
i∈I1

E[G
(1)
ii ].

Now, we can estimate

bnE1 [A◦(z1)A
◦(z2)]
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= σ2 +
1

bn
E1

 ∑
i1 6=j1∈I1
i2 6=j2∈I1

G
(1)
i1j1

(z1)w1i1w1j1G
(1)
i2j2

(z2)w1i2w1j2

+
1

bn
E1

∑
i,j∈I1

G
(1)
ii (z1)G

(1)
jj (z2)w

2
1iw

2
1j



− 1

bn
E

∑
i∈I1

G
(1)
ii (z2)

E1

∑
i∈I1

G
(1)
ii (z1)w

2
1i

− 1

bn
E

∑
i∈I1

G
(1)
ii (z1)

E1

∑
i∈I1

G
(1)
ii (z2)w

2
1i


+

1

bn
E

∑
i∈I1

G
(1)
ii (z1)

E

∑
i∈I1

G
(1)
ii (z2)


= σ2 +

2

bn

∑
i 6=j∈I1

G
(1)
ij (z1)G

(1)
ij (z2) +

1

bn

∑
i 6=j∈I1

G
(1)
ii (z1)G

(1)
jj (z2) +

µ4
bn

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2)

+
1

bn
γ̃n−1(z1)γ̃n−1(z2)−

1

bn

∑
i∈I1

G
(1)
ii (z1)

∑
i∈I1

G
(1)
ii (z2)


= σ2 +

2

bn

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2) +

µ4
bn

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2)−

3

bn

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2)

+
1

bn
γ̃n−1(z1)γ̃n−1(z2)

= σ2 +
2

bn

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2) +

κ4
bn

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2) +

1

bn
γ̃n−1(z1)γ̃n−1(z2),

where κ4 = µ4 − 3.

Proof of (v): Observe that

B(z2) =
〈
G(1)G(1)m(1),m(1)

〉
=

1

bn

∑
i,j∈I1

(
G(1)G(1)

)
ij
w1iw1j =

1

bn

∑
i,j∈I1

n∑
k=2

G
(1)
ik G

(1)
kj w1iw1j ,

and

d

dz2
G

(1)
ij (z2) =

(
G(1)(z2)G

(1)(z2)
)
ij

=

n∑
k=2

G
(1)
ik (z2)G

(1)
kj (z2).

Now, proceed as in (iv) and use the above facts to prove the result. Here we skip the details.

�

Proof of Lemma A.0.2: Proof of (i): Since wjk satisfies the Poincaré inequality with con-

stant m and the Poincaré inequality tensorises, the joint distribution of {wjk}(j,k)∈I+n on Rn(bn+1)
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satisfies the Poincaré inequality with same constant m. Therefore we have

Var
(

Φ
(
{wjk}(j,k)∈I+n

))
≤ 1

m

∑
(j,k)∈I+n

E

[∣∣∣∣ ∂Φ

∂wjk

∣∣∣∣2
]
,

for any continuously differentiable function Φ. Therefore,

Var

 ∑
(1,i)∈In

Gii

 ≤ 1

m

∑
(j,k)∈I+n

E

∣∣∣∣∣∣ ∂

∂wjk

∑
(1,i)∈In

Gii

∣∣∣∣∣∣
2(A.17)

≤ 4

mbn

∑
(j,k)∈I+n

E

∣∣∣∣∣∣
∑

(1,i)∈In

GijGki

∣∣∣∣∣∣
2

=
4

mbn

∑
(j,k)∈I+n

E
[
|αkj |2

]
where αkj =

∑
(1,i)∈In

GkiGij

≤ 4

mbn

n∑
j,k=1

E
[
|αkj |2

]
=

4

mbn
E
[
‖V V T ‖2Fb

]
=

4

mbn
E

[
n∑
i=1

|βi|2
]
,

where

V =


G11 G12 · · · G1kn 0 · · · 0

G21 G22 · · · G2kn 0 · · · 0
...

Gn1 Gn2 · · · Gnkn 0 · · · 0


n×n

and ‖ · ‖Fb stands for the Frobenius norm, and βis are the eigenvalues of V V T . Here, we denote

the set {i : (1, i) ∈ In} by {1, 2, . . . , kn}. Observe that kn = 2bn + 1. Since rank(V V T ) ≤ kn =

O(bn), we have |{i : βi 6= 0}| ≤ kn = O(bn). Also we know that ‖V ‖ ≤ ‖G‖. Therefore,

|βi|2 ≤ ‖V V T ‖2 ≤ ‖G‖4 ≤ 1

|=z|4
.
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Consequently, we have

Var

 ∑
(1,i)∈In

Gii

 ≤ 4

mbn
E

[
n∑
i=1

|βi|2
]
≤ 4

mbn

O(bn)

|=z|4
= O(1).(A.18)

This completes proof of first part of (A.7).

Recall the definition of A from (2.14), A = z − 1√
bn
w11 +

(
G(1)m(1),m(1)

)
. Then

A◦ = A− E[A]

= − 1√
bn
w11 +

1

bn

∑
i 6=j
i,j∈I1

G
(1)
ij w1iw1j +

1

bn

∑
i∈I1

(
G

(1)
ii w

2
1i − E[G

(1)
ii ]
)
,

Consider

A◦1 = A− E1[A]

= − 1√
bn
w11 +

1

bn

∑
i6=j
i,j∈I1

G
(1)
ij w1iw1j +

1

bn

∑
i∈I1

(
G

(1)
ii w

2
1i −G

(1)
ii

)
.(A.19)

So we have

A◦ −A◦1 =
1

bn

∑
i∈I1

(
G

(1)
ii − E

[
G

(1)
ii

])
=:

1

bn
γ̃n−1.(A.20)

Hence

E[|A◦|2] = E[|A◦1 + b−1n γ̃n−1|2] ≤ 2

[
E[|A◦1|2] +

1

b2n
E[|γ̃n−1|2]

]
.

From (A.2), we know that E[|A◦1|2] = O
(

1
bn

)
and from (A.18), We have E[|γ̃n−1|2] = O(1). Com-

bining these two facts and using (2.17), we have

Var(G11(z)) = E
∣∣∣∣ 1

A
− E

1

A

∣∣∣∣2 ≤ E
∣∣∣∣ 1

A
− 1

EA

∣∣∣∣2 = E
∣∣∣∣ A◦AEA

∣∣∣∣2 = O

(
1

bn

)
.

This completes the proof of second part.
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Proof of (ii): Proof of (A.8): Recall from (A.19)

A◦1 = − w11√
bn

+
1

bn

∑
i 6=j∈I1

G
(1)
ij w1iw1j +

1

bn

∑
i∈I1

G
(1)
ii (w2

1i)
◦ =: T1 + T2 + T3.(A.21)

We have E[|T1|4] = O
(

1
b2n

)
. Now

E
[
|T2|4

]
=

1

b4n
E

 ∑
i 6=j,k 6=l,p6=q,s6=t∈I1

G
(1)
ij G

(1)
kl G

(1)
pq G

(1)
st w1iw1jw1kw1lw1pw1qw1sw1t

 .
We use the similar technique as the moment method in the proof of the Semicircle Law. In the

above sum of expectations, we have nonzero terms if the indices of w1m’s match in a certain way.

Non zero contribution to E[|T2|4] come from the two types of matches.

Figure A.1. Type I matching

Figure A.2. Type II matching

Type I: Contribution from this kind of matching is

1

b4n
E

 ∑
i 6=j,p6=k ∈I1

|G(1)
ij |

2|G(1)
pq |2w2

1iw
2
1jw

2
1pw

2
1q

 =
1

b4n
EE1

 ∑
i 6=j,p6=k ∈I1

|G(1)
ij |

2|G(1)
pq |2w2

1iw
2
1jw

2
1pw

2
1q


=

1

b4n

∑
i 6=j

∑
p 6=q

E
[
|G(1)

ij |
2|G(1)

pq |2
]

≤ 1

b4n

∑
i 6=j

∑
p 6=q

√
E
[∣∣∣G(1)

ij

∣∣∣4]E [∣∣∣G(1)
pq

∣∣∣4]

=
1

b4n

∑
i 6=j

∑
p 6=q

O

(
1

b2n

)
(using (A.4))

= O

(
1

b2n

)
.
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Type II: Similarly, contribution from the type II matching is

1

b4n
E

∑
i 6=j

∑
q 6=l∈I1

G
(1)
ij G

(1)
il G

(1)
jq G

(1)
ql w

2
1iw

2
1jw

2
1qw

2
1l

 = O

(
1

b2n

)
.

Similarly, E[|T3|4] = O

(
1

b2n

)
. Hence

E[|A◦1|4] = O

(
1

b2n

)
.(A.22)

Using Lemma 4.4.3. from [AGZ10] with the help of the Poincaré inequality, we have E
[∣∣γ̃n−1∣∣4] ≤

C‖‖∇γ̃n−1‖2‖4∞, where C is a constant depends only on the constant m of the Poincaré inequality.

Following the arguments given at the right side of (A.17) onward and (A.18), one can show that

‖∇γ̃n−1‖2 ≤ C
|=z|4 , where C depends only on m. Hence E

[∣∣γ̃n−1∣∣4] = O(1). Consequently, using

relation (A.20) and (A.22), we have E[|A◦|4] = O
(

1
b2n

)
. Then E[|A◦|3] ≤

(
E[|A◦|4]

)3/4
= O

(
1

b
3/2
n

)
.

Proof of (A.9): First we write B as

B =
〈
G(1)G(1)m(1),m(1)

〉
=
〈
H(1)m(1),m(1)

〉
=

1

bn

∑
i,j∈I1

H
(1)
ij w1iw1j ,

where H(1) = G(1)G(1). Define

B◦1 :=
1

bn

∑
i 6=j∈I1

H
(1)
ij w1iw1j +

1

bn

∑
i∈I1

H
(1)
ii (w2

1i)
◦.

Then we can write

B◦ = B − E[B]

=
1

bn

∑
i 6=j∈I1

Hijw1iw1j +
1

bn

∑
i∈I1

[
H

(1)
ii w

2
1i − E[H

(1)
ii ]
]

= B◦1 +
1

bn

∑
i∈I1

(
H

(1)
ii − E[H

(1)
ii ]
)

= B◦1 +
1

bn
γn−1,

67



where

γn−1(z) =
∑
i∈I1

(
H

(1)
ii − E[H

(1)
ii ]
)

=
∑
i∈I1

n∑
j=2

(
G

(1)
ij G

(1)
ji − E

[
G

(1)
ij G

(1)
ji

])
=

d

dz
γ̃n−1(z).

Proceeding as in the estimate of E[|A◦1|4], we can show

E[|B◦1 |4] = O

(
1

b2n

)
.(A.23)

We have shown that E[|γ̃n−1(z)|4] = O(1). Using this fact and Cauchy’s theorem we have

E[|γn−1(z)|4] = O(1). Hence we have the result.

Proof of (iii):

Var {bnE1 [A◦(z1)A
◦(z2)]}

= Var(T1) + Var(T2) + Var(T3) + 2Cov(T1, T2) + 2Cov(T2, T3) + 2Cov(T3, T1),

where

T1 =
2

bn

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2), T2 =

κ4
bn

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2) and T3 =

1

bn
γ̃n−1(z1)γ̃n−1(z2).

Now, Var(T2) =
κ24
b2n

Var

∑
i∈I1

G
(1)
ii (z1)G

(1)
ii (z2)

 and

Var
{
G

(1)
ii (z1)G

(1)
ii (z2)

}
= E

∣∣∣G(1)
ii (z1)G

(1)
ii (z2)− E[G

(1)
ii (z1)G

(1)
ii (z2)]

∣∣∣2
≤ 2

|=z1|2
Var

(
G

(1)
ii (z2)

)
+

2

|=z2|2
Var

(
G

(1)
ii (z1)

)
=

(
1

|=z1|2
+

1

|=z2|2

)
O

(
1

bn

)
.

Therefore,

Var(T2) ≤
κ24
b2n

(
bnO

(
1

bn

)
+ b2nO

(
1

bn

))
= O

(
1

bn

)
.
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Now

Var(T3) ≤
1

b2n
Var

(
γ̃n−1(z1)γ̃n−1(z2)

)
≤ 1

b2n
E
[
|γ̃n−1(z1)|2|γ̃n−1(z2)|2

]
≤ 1

b2n

√
E
[
|γ̃n−1(z1)|4

]√
E
[
|γ̃n−1(z2)|4

]
=

1

b2n
O(1).

Last equality holds, since E
[
|γ̃n−1(z1)|4

]
= O(1). And finally

Var(T1) =
4

b2n
Var

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2)

 .

Now, using the Poincaré inequality

Var

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2)


≤ 1

m

∑
(s,t)∈I+n

E

∣∣∣∣∣∣ ∂

∂wst

∑
i,j∈I1

G
(1)
ij (z1)G

(1)
ij (z2)

∣∣∣∣∣∣
2

≤ 1

mbn

∑
(s,t)∈I+n

E

∣∣∣∣∣∣
∑
i,j∈I1

G
(1)
is (z1)G

(1)
tj (z1)G

(1)
ij (z2) +G

(1)
ij (z1)G

(1)
is (z2)G

(1)
tj (z2)

∣∣∣∣∣∣
2

≤ 2

mbn

∑
(s,t)∈I+n

E

∣∣∣∣∣∣
∑
i,j∈I1

G
(1)
is (z1)G

(1)
tj (z1)G

(1)
ij (z2)

∣∣∣∣∣∣
2

+
2

mbn

∑
(s,t)∈I+n

E

∣∣∣∣∣∣
∑
i,j∈I1

G
(1)
ij (z1)G

(1)
is (z2)G

(1)
tj (z2)

∣∣∣∣∣∣
2

=: I1 + I2.

We estimate

I1 =
2

mbn

∑
(s,t)∈I+n

E

∣∣∣∣∣∣
∑
i,j∈I1

G
(1)
is (z1)G

(1)
tj (z1)G

(1)
ij (z2)

∣∣∣∣∣∣
2
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=
2

mbn

∑
(s,t)∈I+n

E

∣∣∣∣∣∣
∑
i∈I1

G
(1)
is (z1)G

(1)
ti (z1, z2)

∣∣∣∣∣∣
2

=
2

mbn

∑
(s,t)∈I+n

E
[∣∣∣G(1)

st (z1, z2, z1)
∣∣∣2]

≤ 2

mbn
E

 n∑
s,t=1

∣∣∣G(1)
st (z1, z2, z1)

∣∣∣2


=
2

mbn
E
[
‖A‖2Fb

]
=

2

mbn
E

[
n∑
i=1

β2i

]

≤ C(z1, z2)

mbn
O(bn) = O(1),

where ‖ · ‖Fb is the Frobenius norm, βi are the eigenvalues of V V ∗, and V is the following matrix

Vn×n =


G

(1)
11 (z1) G

(1)
12 (z1) · · · G

(1)
1kn

(z1)

G
(1)
21 (z1) G

(1)
22 (z1) · · · G

(1)
2kn

(z1)
...

...
...

G
(1)
n1 (z1) G

(1)
n2 (z1) · · · G

(1)
nkn

(z1)


n×kn


G

(1)
11 (z2) G

(1)
12 (z2) · · · G

(1)
1kn

(z2)

G
(1)
21 (z2) G

(1)
22 (z2) · · · G

(1)
2kn

(z2)
...

...
...

G
(1)
kn1

(z2) G
(1)
kn2

(z2) · · · G
(1)
knkn

(z2)


kn×kn

×


G

(1)
11 (z1) G

(1)
12 (z1) · · · G

(1)
1n (z1)

G
(1)
21 (z1) G

(1)
22 (z1) · · · G

(1)
2n (z1)

...
...

...

G
(1)
kn1

(z1) G
(1)
t2 (z1) · · · G

(1)
knn

(z1)


kn×n

.

Here we denoted the elements of set I1 as I1 = {1, 2, . . . , kn}. Observe that kn = 2bn. Rank of

V ≤ kn = O(bn). This implies

n∑
i=1

β2i ≤ knC(z1, z2) = O(bn)C(z1, z2).

Therefore, Var(T1) = O
(

1
b2n

)
, and hence Var{bnE1 [A◦(z1)A

◦(z2)]} = O
(

1
bn

)
.

70



Second part of (iii) follows from the following two facts with the help of Cauchy’s theorem.

bnE1 [A◦(z1)B
◦(z2)] = bn

d

dz2
E1 [A◦(z1)A

◦(z2)]

and Var {bnE1 {A◦(z1)A◦(z2)}} = O

(
1

bn

)
.

Here we skip the details.

Proof of (iv): Using (2.25) and (A.1), and proceeding as the proof of proposition 2.2.2,

E
[∣∣γ◦n−1(z)− γ◦n(z)

∣∣4] = E
[∣∣∣(TrG(1)(z)− E[TrG(1)(z)]

)
− (TrG(z)− E[TrG(z)])

∣∣∣4]

= E

[∣∣∣∣1 +B(z)

A(z)
− E

[
1 +B(z)

A(z)

]∣∣∣∣4
]

≤ C

|=z|8
[
E
[
|A◦|4

]
+ E

[
|B◦|4

]
+ E

[
|A◦|4

]]
= O

(
1

b2n

)
.

The last equality follows from the estimates (A.8) and (A.9).

Using martingale differences as in the proof of Proposition 2.2.2,

E
[
|γ◦n|

4
]
≤ Cn

n∑
k=1

E
[
|γn − Ek[γn]|4

]
.

Consider for k = 1, others will be similar.

E
[
|γn − E1[γn]|4

]
= E

[∣∣∣Tr(G−G(1))− E1

[
Tr(G−G(1))

]∣∣∣4]

= E

[∣∣∣∣1 +B(z)

A(z)
− E1

[
1 +B(z)

A(z)

]∣∣∣∣4
]

≤ C1(z)E[|A◦1|4] + C2(z)E[|B◦1 |4]

= O

(
1

b2n

)
.

The last equality follows from (A.22) and (A.23). Hence we have the result.

Proof of (v): Using resolvent identity,

(X2 − zI)−1 = (X1 − zI)−1 + (X1 − zI)−1(X1 −X2)(X2 − zI)−1,
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we have

(A.24) zG11(z) = −1 +
∑

(1,k)∈In

m1kGk1,

where In is defined in (2.1) and mijs are defined in (2.2). Now, to analyse the terms E[m1kGk1],

we use the following (see eg. [LP09]): Given ξ, a real valued random variable with p + 2 finite

moments, and φ, a function from C→ R with p+ 1 continuous and bounded derivatives then:

(A.25) E[ξφ(ξ)] =

p∑
a=0

κa+1

a!
E
[
φ(a)(ξ)

]
+ εp+1

where κa is the a-th cumulant of ξ, |εp+1| ≤ C supt |φ(p+1)(t)|E[|ξ|p+2] and C depends only on p.

Since fn(z) = 1
nE[TrG(z)] = E[G11(z)], using (A.24) and (A.25) we get

zfn(z) = −1 +
∑

(1,k)∈In

E[m1kGk1] = −1−
∑
k∈I1

1

bn
E
[
G2
k1 +GkkG11

]
+ rn,(A.26)

where rn contains the third cumulant term corresponding to p = 2 in (A.25) for k 6= 1, and the

error terms due to the truncation of the decoupling formula (A.25) at p = 2 for k 6= 1 and at p = 0

for k = 1. We write (A.26)

zfn(z) = −1− 1

bn
E[G11]E

∑
k∈I1

Gkk

− 1

bn
Cov

G11,
∑
k∈I1

Gkk

− 1

bn
E

∑
k∈I1

G2
k1

+ rn

= −1− fn(z)(2fn(z))− 1

bn
Cov

G11,
∑
k∈I1

Gkk

− 1

bn
E

∑
k∈I1

G2
k1

+ rn.

Now, by the Cauchy-Schwarz inequality and (A.18) we get

1

bn

∣∣∣∣∣∣Cov

G11,
∑
k∈I1

Gkk

∣∣∣∣∣∣ ≤ 1

bn

√
Var(G11)

√√√√√Var

∑
k∈I1

Gkk


≤ 1

bn
2|=z|−1

√
O(|=z|−4)

= O

(
1

bn|=z|3

)
.
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Also notice that

1

bn

∣∣∣∣∣∣E
∑
k∈I1

G2
k1

∣∣∣∣∣∣ ≤ 1

bn
|=z|−2.

We claim rn = O

(
1

bn|=z|4

)
. To prove this, observe that the third cumulant term gives

(A.27)
κ3

2b
3/2
n

E

∑
k∈I1

2(G1k)
3 + 6G11G1kGkk


Since ∑

k∈I1

|G1k|2 ≤ ‖G‖2 ≤ |=z|−2 and |Gij | ≤ |=z|−1,

we conclude that the third cumulant term contributes O

(
1

bn|=z|3

)
to rn. In a similar manner,

the error due to truncation of decoupling formula (A.25) at p = 2 is O

(
1

bn|=z|4

)
. Similarly, the

error term due to truncation of decoupling formula at p = 0 for k = 1 is O

(
1

bn|=z|2

)
. Thus the

claim is proved. Hence

zfn(z) = −1− 2f2n(z) +O

(
1

bn|=z|4

)
for z ∈ C\R.

Now, following similar argument given in the proof of (3.1) in [PRS12], one can show that

|fn(z)− f(z)| ≤ O
(

1

bn|=z|6

)
where f(z) = 1

4(−z +
√
z2 − 8).

Proof of (vi): Recall A(z) = z − b
−1/2
n w11 + b−1n

∑
i,j∈I1 G

(1)
ij w1iw1j . Now, using (A.12) with

G replaced by G(1), we have

(E[A(z)])−1 =
1

z + b−1n
∑

j∈I1 E[G
(1)
jj ]

=
1

z + 2fn(z)
= (z + 2f(z))−1 +O(b−1n ) = −f(z) +O(b−1n )

Hence (E[A(z)])−1 = −f(z) +O(b−1n ). To prove the second part, observe that

E[B(z)] =
1

bn
E

∑
i,j∈I1

(G(1)G(1))ijw1iw1j

 =
1

bn
E

∑
i∈I1

(G(1)G(1))ii
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=
1

bn
E

∑
i∈I1

n∑
k=2

G
(1)
ik G

(1)
ki

 =
1

bn

∑
i∈I1

d

dz
G

(1)
ii

Again using (A.12) and Cauchy’s integral formula, we have

E[B(z)] =
d

dz
(2fn(z)) = 2f ′(z) +O(b−1n ).

This completes the proof of Lemma A.0.2. �

A.0.1. Proof of (2.29):

Proof. We have to find the limit of

E[Tn] =
2

bn
E

∑
i,j∈I1

G
(1)
ij (z)G

(1)
ij (zµ)


as n→∞, where I1 = {2 ≤ i ≤ n : (1, i) ∈ In}. Let f, g ∈ Cb(R). Define a bilinear form on Cb(R)

as

(A.28) 〈f, g〉n =
1

bn
E

∑
i,j∈I1

f(M)ijg(M)ji

 .
Then E[Tn] = 〈h(M), hµ(M)〉n, where h(x) = (x− z)−1 and hµ(x) = (x− zµ)−1.

Lemma A.0.3. For f, g ∈ Cb(R) the limit 〈f, g〉 = lim
n→∞

〈f, g〉n exists.

Proof. The idea of the proof is similar to the proof of Lemma 3.11 of [LS13]. First we prove

this result for monomials. Although monomials are unbounded, still (A.28) makes sense for all n,

since all moments of the entries of M are finite. Consider f(x) = xl and g(x) = xm where l,m ∈ N.

Then

〈xl, xm〉n =
1

b
1+(l+m)/2
n

∑
(i0,i1),(i1,i2),...,(il+m−1,i0)∈In

io,il∈I1

E
[
wi0i1wi1i2 . . . wil+m−1i0

]
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If (l+m) is odd then 〈xl, xm〉n → 0 using independence of matrix entries and E(wij) = 0, and order

counting of independent vertices. The argument is similar to the combinatorial argument given in

the proof of Wigner semicircular law (see [AGZ10]). We leave it for the reader.

Now, we assume l +m is even. Then

〈xl, xm〉n =
1

b
1+(l+m)/2
n

∑
(i0,i1),(i1,i2),...,(il+m−1,i0)∈In

io,il∈I1

E
[
wi0i1wi1i2 . . . wil+m−1i0

]

=
1

b
1+(l+m)/2
n

∑
(i0,i1),(i1,i2),...,(il+m−1,i0)∈In

io,il∈I1

E
[
w1i0wi0i1wi1i2 . . . wil+m−1i0wi01

]
+O(b−1n )

=
1

b
1+(l+m)/2
n

∑
(i0,i1),(i1,i2),...,(il+m−1,i0)∈In

(1,io),(1,il)∈In

E
[
w1i0wi0i1wi1i2 . . . wil+m−1i0wi01

]
+O(b−1n )(A.29)

The second last equality in (A.29) holds due to order calculation of independent vertices and

independence of matrix entries. Now, define for k = 1, 2, . . . , l +m,

xk =


ik − ik−1 if |ik − ik−1| ≤ bn

(ik − ik−1)− n if ik − ik−1 > bn

n+ (ik − ik−1) if ik − ik−1 < −bn

with il+m = i0, and

x0 =

 i0 − 1 if |i0 − 1| ≤ bn

(i0 − 1)− n if i0 − 1 > bn
and xl+m+1 =

 1− i0 if |1− i0| ≤ bn

n+ (1− i0) if 1− i0 < −bn.

Note, x0 = −xl+m+1. Since l,m are fixed and bn →∞, for large n the restrictions

{(i0, i1), (i1, i2), . . . , (il+m−1, i0) ∈ In and (1, i0), (1, il) ∈ In} are equivalent to {|x0|, |x1|, . . . , |xl+m|

≤ bn, x0 + x1 + · · · + xl+m + xl+m+1 = 0 and |x0 + x1 + · · · + xl| ≤ bn}. Also observe that

x0 + x1 + · · ·+ xl+m + xl+m+1 = 0 is same as x1 + · · ·+ xl+m = 0 since x0 = −xl+m+1. Therefore

for large n

〈xl, xm〉n =
1

b
1+(l+m)/2
n

∑
x1+···+xl+m=0

|xi|≤bn,0≤i≤l+m, |x0+x1+···+xl|≤bn

E
[
w1i0wi0i1wi1i2 . . . wil+m−1i0wi01

)
+O(b−1n ).

Without loss of generality, we assume that l ≤ m. Each {i0, i1, i2, . . . , il+m−1, i0} is a closed path

such that distance between the end points of each edge is bounded by bn. As in the proof of Wigner
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semicircular law only the paths whose edges are pair matched contributes to the limit, here also, only

such paths contribute to the limit. And contribution of each path is E(w1i0wi0i1 . . . wil+m−1i0wi01) =

1 since E(w2
ij) = 1. Each such path corresponds to a Dyck path of length (l + m). Recall that a

Dyck path (S(0), S(1), . . . , S(l +m)) of length (l +m) satisfies (see [AGZ10])

S(0) = S(l+m) = 0, S(1), S(2), . . . , S(l+m−1) ≥ 0 and |S(i+1)−S(i)| = 1, for i = 0, 1, . . . , l+m−1.

Specifically, S(t+ 1)− S(t) = 1 if the non-oriented edge (it, it+1) appears in {i0, i1, . . . , il+m−1, i0}

for the first time and S(t + 1) − S(t) = −1 if the edge (it, it+1) appears in {i0, i1, . . . , il+m−1, i0}

for the second time.

Here each Dyck path does not give equal contribution to the limit due to the condition that

(1, il) ∈ In and in terms of xi, which is same as |x0 + x1 + · · · + xl| ≤ bn. We have to take

into account this condition. Suppose S(l) = k, 0 ≤ k ≤ l. Then during the first l steps of the

path {i0, i1, . . . , il+m−1, i0}, k edges appear only once and (l− k)/2 edges appear twice. The edges

appearing twice, the corresponding two number xi have same absolute value but with different

sign. We rename the remaining k numbers xi which appear only once as y1, y2, . . . , yk (according

to their order of appearance) and x0 as y0. So the condition |x0 + x1 + . . . + xl| ≤ bn reduces to

|y0 + y1 + . . .+ yk| ≤ bn. Therefore

〈xl, xm〉n =
1

b
1+(l+m)/2
n

l∑
k=0

|{Dyck path of length l +m with S(l) = k}|

× |{|y0| ≤ bn, |y1| ≤ bn, . . . , |yk| ≤ bn, . . . , |yl+m| ≤ bn, |y0 + y1 + · · ·+ yk| ≤ bn}|+O(b−1n ).

and

〈xl, xm〉

= lim
n→∞

〈xl, xm〉n

= (
√

2)l+m+2
l∑

k=0

|{Dyck path of length l +m with S(l) = k}|

×Vol{|t0| ≤ 1/2, |t1| ≤ 1/2, . . . , |t l+m
2
| ≤ 1/2, |t0 + t1 + · · ·+ tk| ≤ 1/2}
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= (
√

2)l+m+2
l∑

k=0

|{Dyck path of length l +m with S(l) = k}| × P (|T0 + T1 + · · ·+ Tk| ≤ 1/2),

where T0, T1, . . . , T l+m
2

are independent random variables uniformly distributed on [−1/2, 1/2]. Let

Sk+1 = T0 + T1 + . . .+ Tk. Then

E
[
eixSk+1

]
=
(
E[eixT0 ]

)k+1
=

(
sinx/2

x/2

)k+1

.

Using inversion formula, the density of Sk+1 is given by

fk+1(s) =
1

2π

∫ ∞
−∞

e−ixs
(

sinx/2

x/2

)k+1

dx.

Now,

γk+1 := P (|Sk+1| ≤ 1/2) =

∫ 1/2

−1/2
fk+1(s)ds =

1

2π

∫ ∞
−∞

(
sinx/2

x/2

)k+2

dx = fk+2(0),

using [Cra99] we get exact formula of γk+1:

γk+1 =


1

(k+1)!

∑(k+1)/2
s=0 (−1)s

(
k+2
s

) (
k+1
2 − s+ 1

2

)k+1
if k + 1 even

1
(k+1)!

∑k/2
s=0(−1)s

(
k+2
s

) (
k+1
2 − s+ 1

2

)k+1
if k + 1 odd.

(A.30)

The number of Dyck path of length l +m with S(l) = k is[(
l
l−k
2

)
−
(

l
l−k−2

2

)]
×
[(

m
m−k
2

)
−
(

m
m−k−2

2

)]
=

(k + 1)2

(l + 1)(m+ 1)

(
l + 1
l+k+2

2

)(
m+ 1
m+k+2

2

)
.(A.31)

Hence from (A.30) and (A.31), we get

〈xl, xm〉 = (
√

2)l+m+2Cl,m

where Cl,m = 0 if (l +m) is odd and

Cl,m =
l∑

k=0

(k + 1)2

(l + 1)(m+ 1)

(
l + 1
l+k+2

2

)(
m+ 1
m+k+2

2

)
γk+1

=


∑l/2

k=0
(2k+1)2

(l+1)(m+1)

( l+1
l−2k

2

)(m+1
m−2k

2

)
γ2k+1 if l even∑(l−1)/2

k=0
(2k+2)2

(l+1)(m+1)

( l+1
l−2k−1

2

)( m+1
m−2k−1

2

)
γ2k+2 if l odd
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if (l+m) is even and l ≤ m, otherwise, Cl,m = Cm,l. If f, g are polynomials, f(x) =
∑p

i=0 aix
i, g(x) =∑q

i=0 bix
i, then by linearity

〈f, g〉 =

p∑
i=0

q∑
j=0

aibj(
√

2)i+j+2Ci,j .(A.32)

For general bounded continuous functions f, g, to show that 〈f, g〉 exists we have to use the Stone-

Weierstrass theorem to approximate f, g by appropriate polynomial and then (A.32). The argument

is similar to the argument given in the proof of Lemma 3.11 of [LS13]. We skip the details. �

In the next lemma we diagonalize the bilinear form 〈f, g〉.

Lemma A.0.4. Let {Un(x)}n≥0 be the rescaled Chebyshev polynomial of the second kind on

[−2
√

2, 2
√

2],

Un(x) =

bn
2
c∑

k=0

(−1)k
(
n− k
k

)(
x√
2

)n−2k
.

Then {Un(x)} are orthogonal with respect to the bilinear form (A.32), that is,

〈Un, Um〉 = 2δnmγn+1,(A.33)

where γn+1 is defined in (A.30).

Proof. The proof of this lemma is similar to the proof of Lemma 3.12 of [LS13]. For sake of

completeness we outline it here. Since 〈xl, xm〉 = 0 if l + m is odd, from linearity 〈Ul, Um〉 = 0 if

l +m is odd. We are left to compute 〈U2n, U2m〉 and 〈U2n+1, U2m+1〉. We first compute 〈x2l, U2n〉

and 〈x2l+1, U2n+1〉 for l = 0, 1, . . . , n.

〈x2l, U2n〉 = (
√

2)2l+2
n∑
k=0

(−1)k
(

2n− k
k

)
C2l,2n−2k

= (
√

2)2l+2

[
n−l∑
k=0

(−1)k
(

2n− k
k

) l∑
t=0

(2t+ 1)2

(2l + 1)(2n− 2k + 1)

(
2l + 1

l − t

)(
2n− 2k + 1

n− k − t

)
γ2t+1

+
n∑

k=n−l+1

(−1)k
(

2n− k
k

) n−k∑
t=0

(2t+ 1)2

(2l + 1)(2n− 2k + 1)

(
2l + 1

l − t

)(
2n− 2k + 1

n− k − t

)
γ2t+1

]
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= (
√

2)2l+2
l∑

t=0

(2t+ 1)2

2l + 1

(
2l + 1

l − t

)[n−t∑
k=0

(−1)k(2n− k)!

k!(n− k − t)!(n− k + t+ 1)!

]
γ2t+1

= (
√

2)2l+2
l∑

t=0

(2t+ 1)2

2l + 1

(
2l + 1

l − t

)
G1(n, t)γ2t+1,

where

G1(n, t) =
n−t∑
k=0

(−1)k(2n− k)!

k!(n− k − t)!(n− k + t+ 1)!
.

Similarly,

〈x2l+1, U2n+1〉 = (
√

2)2l+3
l∑

t=0

(2t+ 2)2

2l + 2

(
2l + 2

l − t

)[n−t∑
k=0

(−1)k(2n+ 1− k)!

k!(n− k − t)!(n− k + t+ 2)!

]
γ2t+2

= (
√

2)2l+3
l∑

t=0

(2t+ 2)2

2l + 2

(
2l + 2

l − t

)
G2(n, t)γ2t+2,

where

G2(n, t) =
n−t∑
k=0

(−1)k(2n+ 1− k)!

k!(n− k − t)!(n− k + t+ 2)!
.

G1(n, t) and G2(n, t) can be written in terms of hypergeometric function as follows:

G1(n, t) =
(2n)!

(n− t)!(n+ t+ 1)!
2F1

(
−(n−t),−(n+t+1)

−2n ; 1

)

G2(n, t) =
(2n+ 1)!

(n− t)!(n+ t+ 2)!
2F1

(
−(n−t),−(n+t+2)

−2n− 1 ; 1

)

where 2F1 is a hypergeometric function. By the Chu-Vandermonde identity (see [AAR99]), we

have

2F1

(
−(n−t),−(n+t+1)

−2n ; 1

)
=

(−n+ t+ 1)n−t
(−2n)n−t

,

2F1

(
−(n−t),−(n+t+2)

−2n− 1 ; 1

)
=

(−n+ t+ 1)n−t
(−2n− 1)n−t

,
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where (a)n = a(a+ 1) · · · (a+ n− 1). Since

(−n+ t+ 1)n−t =

 0 if t = 0, 1, · · · , n− 1

1 if t = n

we have G1(n, t) = 0, G2(n, t) = 0 for t = 0, 1, . . . , n − 1 and G1(n, n) = 1/(2n + 1), G2(n, n) =

1/(2n+ 2). Therefore, 〈x2l, U2n〉 = 0 for 0 ≤ l ≤ n− 1 and

〈x2n, U2n〉 = (
√

2)2n+2γ2n+1.

Similarly, 〈x2l+1, U2n+1〉 = 0 for 0 ≤ l ≤ n− 1 and

〈x2n+1, U2n+1〉 = (
√

2)2n+3γ2n+2.

Therefore

〈U2n, U2n〉 = 2γ2n+1 and 〈U2n+1, U2n+1〉 = 2γ2n+2.

This completes the proof of the lemma. �

Now, we complete the proof of (2.29). For f, g ∈ Cb(R), if

fk =
1

4π

∫ 2
√
2

−2
√
2
f(x)Uk(x)

√
8− x2dx, gk =

1

4π

∫ 2
√
2

−2
√
2
g(x)Uk(x)

√
8− x2dx,

then

〈f, g〉 =

∞∑
k=0

fkgk2γk+1(A.34)

=
1

8π3

∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2
f(x)g(y)

√
8− x2

√
8− y2

[
π

∞∑
k=0

Uk(x)Uk(y)γk+1

]
dxdy

=
1

8π3

∫ 2
√
2

−2
√
2

∫ 2
√
2

−2
√
2
f(x)g(y)

√
8− x2

√
8− y2F (x, y)dxdy

where

F (x, y) = π

∞∑
k=0

Uk(x)Uk(y)γk+1 = 2

∫ ∞
−∞

z − z3

2(1− z2)2 + z2(x2 + y2)− z(1 + z2)xy
ds(A.35)
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with z = sin s
s . Now, (A.34) holds due to (A.33) and orthogonality of Chebyshev polynomial with

respect to the Wigner semicircular law, that is,∫ 2
√
2

−2
√
2
Un(x)Um(x)

1

4π

√
8− x2dx = δmn.

And (A.35) is a straightforward consequence of the Fourier analysis using the following fact

Un(x) =
sin[(n+ 1)θ]

sin θ
, x = 2

√
2 cos θ.

This completes the proof of Proof of (2.29). �

Lemma A.0.5 (Lemma 2.3, [SB95]). Let P , Q be two rectangular matrices of the same size.

Then for any x, y ≥ 0,

µ(P+Q)(P+Q)∗(x+ y,∞) ≤ µPP ∗(x,∞) + µQQ∗(y,∞)

Proof. It follows directly from the Cauchy interlacing theorem. �

Lemma A.0.6 (Sherman-Morrison formula). Let Pn×n and (P + vv∗) be invertible matrices,

where v ∈ Cn. Then we have

(P + vv∗)−1 = P−1 − P−1vv∗P−1

1 + v∗P−1v
.

In particular,

v∗(P + vv∗)−1 =
v∗P−1

1 + v∗P−1v
.

Proof. Using the resolvent identity, we have

P−1 − (P + vv∗)−1 = P−1vv∗(P + vv∗)−1.

Secondly since v∗P−1v is a scalar, we have

(v∗P−1v)P−1vv∗(P + vv∗)−1 = P−1v(v∗P−1v)v∗(P + vv∗)−1

= (P−1vv∗P−1)vv∗(P + vv∗)−1
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= (P−1vv∗P−1)[I − P (P + vv∗)−1]

= P−1vv∗P−1 − P−1vv∗(P + vv∗)−1.

Which implies that (1 + v∗P−1v)P−1vv∗(P + vv∗)−1 = P−1vv∗P−1. This completes the proof. �

Lemma A.0.7 ( Lemma 2.6, [SB95]). Let P , Q be n × n matrices such that Q is Hermitian.

Then for any r ∈ Cn and z = E + iη ∈ C+ we have

∣∣tr ((Q− zI)−1 − (Q+ rr∗ − zI)−1
)
P
∣∣ =

∣∣∣∣r∗(Q− zI)−1P (Q− zI)−1r

1 + r∗(Q− zI)−1r

∣∣∣∣ ≤ ‖P‖η .

Proof. If C,D are two invertible matrices, then the resolvent identity tells us that C−1−D−1 =

C−1(D − C)D−1. Applying this result, we have

tr
(
(Q− zI)−1 − (Q+ rr∗ − zI)−1

)
P = tr

[
(Q− zI)−1rr∗(Q+ rr∗ − zI)−1P

]
= r∗(Q+ rr∗ − zI)−1P (Q− zI)−1r.

Once again using the resolvent identity, we have

[1 + r∗(Q− zI)−1r]r∗(Q+ rr∗ − zI)−1P (Q− zI)−1r

= r∗(Q+ rr∗ − zI)−1P (Q− zI)−1r

+ r∗(Q− zI)−1rr∗(Q+ rr∗ − zI)−1P (Q− zI)−1r

= r∗[(Q+ rr∗ − zI)−1 + (Q− zI)−1rr∗(Q+ rr∗ − zI)−1]

× P (Q− zI)−1r

= r∗(Q− zI)−1P (Q− zI)−1r.

Combining the above two equations, we obtain

∣∣tr ((Q− zI)−1 − (Q+ rr∗ − zI)−1
)
P
∣∣ =

∣∣∣∣r∗(Q− zI)−1P (Q− zI)−1r

1 + r∗(Q− zI)−1r

∣∣∣∣ .
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Let {λi}1≤i≤n be the eigenvalues of Q, and U =
∑n

i=1 uiu
∗
i be a matrix formed by the orthonor-

mal eigenvectors of Q. Then

|r∗(Q− zI)−1P (Q− zI)−1r| ≤ ‖P‖‖(Q− zI)−1r‖2

= ‖P‖
n∑
i=1

|u∗i r|2

|λi − z|2
.

Secondly,

|1 + r∗(Q− zI)−1r| ≥ |=(r∗(Q− zI)−1r)|

=

∣∣∣∣∣=
(

n∑
i=1

|u∗i r|2

λi − z

)∣∣∣∣∣
= η

n∑
i=1

|u∗i r|
|λi − z|2

.

Combining the last two estimates, we obtain

∣∣tr ((Q− zI)−1 − (Q+ rr∗ − zI)−1
)
P
∣∣ =

∣∣∣∣r∗(Q− zI)−1P (Q− zI)−1r

1 + r∗(Q− zI)−1r

∣∣∣∣ ≤ ‖P‖η .

�

Lemma A.0.8 ( [Azu67], Lemma 1). Let {Xn}n be a sequence of random variables such that

|Xn| ≤ Kn almost surely, and E[Xi1Xi2 . . . Xik ] = 0 for all k ∈ N, i1 < i2 < · · · < ik. Then for

every λ ∈ R we have

E

[
exp

{
λ

n∑
i=1

Xi

}]
≤ exp

{
λ2

2

n∑
i=1

K2
i

}
.

In particular, for any t > 0 we have

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

{
− t2

2
∑n

i=1K
2
i

}
.

Proof. Since ex is a convex function, and |Xi| ≤ Ki, we have

exp{λXi} = exp

{
λ

(
Ki +Xi

2

)
+ (−λ)

(
Ki −Xi

2

)}
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= exp

{
λKi

(
1 +Xi/Ki

2

)
+ (−λKi)

(
1−Xi/Ki

2

)}
≤ 1

2
(1 +Xi/Ki) exp{λKi}+

1

2
(1−Xi/Ki) exp{−λKi}

= cosh(λKi) +
Xi

Ki
sinh(λKi)

≤ exp{λ2K2
i /2}+

Xi

Ki
sinh(λKi) a.s.,

where the last inequality follows from the fact that cosh(x) ≤ exp{x2/2}. Therefore using the fact

E[Xi1Xi2 . . . Xik ] = 0 for all k ∈ N, i1 < i2 < · · · < ik, we have

E

[
exp

{
λ

n∑
i=1

Xi

}]
≤

n∏
i=1

exp{λ2K2
i /2} = exp

{
λ2

2

n∑
i=1

K2
i

}
.

�

Lemma A.0.9. Let P,Q be two n× n matrices, then

‖µPP ∗ − µQQ∗‖ ≤
2

n
rank(P −Q).

Proof. By Cauchy’s interlacing property,

‖µPP ∗ − µQQ∗‖ ≤
1

n
rank(PP ∗ −QQ∗)

≤ 1

n
rank((P −Q)P ∗) +

1

n
rank(Q(P −Q)∗)

≤ 2

n
rank(P −Q).

�

Lemma A.0.10 ( [BG13], Lemma C.3). Let P and Q be n × n Hermition matrices, and I ⊂

{1, 2, . . . , n}, then ∣∣∣∣∣∑
k∈I

(P − zI)−1kk −
∑
k∈I

(Q− zI)−1kk

∣∣∣∣∣ ≤ 2

=(z)
rank(P −Q).

Proof. Using the resolvent identity, we have

(P − zI)−1 − (Q− zI)−1 = (P − zI)−1(Q− P )(Q− zI)−1.
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Therefore r := rank((P − zI)−1 − (Q− zI)−1) ≤ rank(P −Q). Using the singular value decompo-

sition, we can write

(P − zI)−1 − (Q− zI)−1 =
r∑
i=1

siuiv
∗
i ,

where {u1, . . . , ur} and {v1, . . . , vr} are two sets of orthonormal vectors, and s1, . . . , sr are the at

most r non zero singular values of (P − zI)−1 − (Q− zI)−1. As a result, we can write

(P − zI)−1kk − (Q− zI)−1kk =
r∑
i=1

si〈ui, ek〉〈vi, ek〉.

Using Cauchy-Schwarz inequality,

∑
k∈I

(P − zI)−1kk −
∑
k∈I

(Q− zI)−1kk =
r∑
i=1

si
∑
k∈I
〈ui, ek〉〈vi, ek〉

≤
r∑
i=1

si

√∑
k∈I
|〈ui, ek〉|2

√∑
k∈I
|〈vi, ek〉|2

≤
r∑
i=1

si ≤
2r

=(z)
≤ 2

=(z)
rank(P −Q),

where the second last inequality follows from the fact that si ≤ ‖(P −zI)−1−(Q−zI)−1‖ ≤ 2/=(z)

for all 1 ≤ i ≤ r. �

Lemma A.0.11. Let Cj and Bj be same as defined in (3.6), rj be the jth column of R, and

Ij ⊂ {1, 2, . . . , n} be same as (3.1). Then

P

∣∣∣∣∣∣
∑
k∈Ij

(C−1j )kk − E
∑
k∈Ij

(C−1j )kk

∣∣∣∣∣∣ > t

 ≤ 2 exp

{
−=(z)2t2

32n

}

P

∣∣∣∣∣∣
∑
k∈Ij

(C−1j B−1j )kk − E
∑
k∈Ij

(C−1j B−1j )kk

∣∣∣∣∣∣ > t

 ≤ 2 exp

{
−=(z)2t2

32n

}

P

∣∣∣∣∣∣
∑
k∈Ij

(C−1j rjr
∗
jC
−1∗
j )kk − E

∑
k∈Ij

(C−1j rjr
∗
jC
−1∗
j )kk

∣∣∣∣∣∣ > t

 ≤ 2 exp

{
−=(z)2t2

32n

}

P

∣∣∣∣∣∣
∑
k∈Ij

(C−1j B−1j rjr
∗
jB
−1∗C−1∗j )kk − E

∑
k∈Ij

(C−1j B−1j rjr
∗
jB
−1∗C−1∗j )kk

∣∣∣∣∣∣ > t

 ≤ 2 exp

{
−=(z)2t2

32n

}
.

85



Proof. Let Fl = σ{y1, . . . , yl} be the σ-algebra generated by the column vectors y1, . . . , yl.

Then, we can write

∑
k∈Ij

(C−1j )kk − E
∑
k∈Ij

(C−1j )kk =
n∑
l=1

E
∑
k∈Ij

(C−1j )kk

∣∣∣∣∣∣Fl
− E

∑
k∈Ij

(C−1j )kk

∣∣∣∣∣∣Fl−1

 .

Notice that for any two matrices P,Q, we have rank(PP ∗ −QQ∗) ≤ 2rank(P −Q) (from Lemma

A.0.9). Therefore, using the Lemma A.0.10 and Lemma A.0.8, we can conclude the result. The

remaining three equations can also be proved in the same way. �
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