Name: \qquad August 20, 2014

All unnecessary electronics must be turned off and out of sight. This means no cellular phones, iPods, wearing of headphones, or anything of the sort. This is a closed book and closed notes test.

Problem 1: (8 points) Define the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as $T(x, y)=(2 x+3 y, x-y)$. Find the matrix of T with respect to the canonical basis $\{(1,0),(0,1)\}$.

Solution: We compute

$$
\begin{aligned}
& T((1,0))=(2,1)=2(1,0)+1(0,1) \\
& T((0,1))=(3,-1)=3(1,0)+(-1)(0,1)
\end{aligned}
$$

Therefore the matrix of T with respect to the canonical basis is

$$
\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right]
$$

Problem 2:(12 points) Show that the following subspace U of \mathbb{R}^{5} can not be the null space of any linear $\operatorname{map} T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$.

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{1}=2 x_{2}, x_{3}=x_{4}=x_{5}\right\} \subset \mathbb{R}^{5}
$$

This is a mini proof-writing problem. So write your solution using complete English sentences. [Hint: Find the dimension of the above subspace, and then use the dimension formula].

Solution: First of all, we notice that $\operatorname{dim}(U)=2$. Because \mathbb{R}^{5} has dimension 5 , and U is obtained from \mathbb{R}^{5} by imposing three independent constraints namely, $x_{1}=2 x_{2}, x_{3}=x_{4}, x_{4}=x_{5}$.

Now suppose there is a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ such that

$$
\operatorname{null}(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{1}=2 x_{2}, x_{3}=x_{4}=x_{5}\right\}
$$

Then using the dimension formula we have

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{R}^{5}\right) & =\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T)) \\
i . e ., \quad \operatorname{dim}(\operatorname{range}(T)) & =5-2=3 .
\end{aligned}
$$

But this is a contradiction. Because $\operatorname{range}(T) \subset \mathbb{R}^{2}$, therefore $\operatorname{dim}(\operatorname{range}(T)) \leq 2$.

