MAT 67

Name:

August 20, 2014

All unnecessary electronics must be turned off and out of sight. This means no cellular phones, iPods, wearing of headphones, or anything of the sort. This is a closed book and closed notes test.

Problem 1: (8 points) Define the map $T : \mathbb{R}^2 \to \mathbb{R}^2$ as T(x, y) = (2x + 3y, x - y). Find the matrix of T with respect to the canonical basis $\{(1, 0), (0, 1)\}$.

Solution: We compute

$$T((1,0)) = (2,1) = 2(1,0) + 1(0,1)$$

$$T((0,1)) = (3,-1) = 3(1,0) + (-1)(0,1).$$

Therefore the matrix of T with respect to the canonical basis is

$$\left[\begin{array}{rrr} 2 & 3\\ 1 & -1 \end{array}\right].$$

Problem 2: (12 points) Show that the following subspace U of \mathbb{R}^5 can not be the null space of any linear map $T: \mathbb{R}^5 \to \mathbb{R}^2$.

$$U = \{(x_1, x_2, x_3, x_4, x_5) | x_1 = 2x_2, x_3 = x_4 = x_5\} \subset \mathbb{R}^5.$$

This is a mini proof-writing problem. So write your solution using complete English sentences. [Hint: Find the dimension of the above subspace, and then use the dimension formula].

Solution: First of all, we notice that dim(U) = 2. Because \mathbb{R}^5 has dimension 5, and U is obtained from \mathbb{R}^5 by imposing three independent constraints namely, $x_1 = 2x_2, x_3 = x_4, x_4 = x_5$.

Now suppose there is a linear map $T:\mathbb{R}^5\to\mathbb{R}^2$ such that

 $null(T) = \{(x_1, x_2, x_3, x_4, x_5) | x_1 = 2x_2, x_3 = x_4 = x_5\}.$

Then using the dimension formula we have

$$dim(\mathbb{R}^5) = dim(null(T)) + dim(range(T))$$

i.e.,
$$dim(range(T)) = 5 - 2 = 3.$$

But this is a contradiction. Because $range(T) \subset \mathbb{R}^2$, therefore $dim(range(T)) \leq 2$.