MAI 07		Max tim	e 20mins	Qui	Z 2
Name:		 		 August 14, 2	014
4.11	1	 1 00 1		 	. 1

0

· •

All unnecessary electronics must be turned off and out of sight. This means no cellular phones, iPods, wearing of headphones, or anything of the sort. This is a closed book and closed notes test.

Problem 1:(5 points) Find the dimension of the following vector space

 $V = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 = x_2, x_2 = x_3, x_1 + x_3 = 2x_2 \}.$

Explain your answer.

Solution: We know that $\dim(\mathbb{R}^4) = 4$. In the above set V, two independent linear conditions are imposed on \mathbb{R}^4 , namely $x_1 = x_2$ and $x_2 = x_3$ (note that the condition $x_1 + x_3 = 2x_2$ can be obtained from $x_1 = x_2$, $x_2 = x_3$ just by adding them). Therefore $\dim(V) = \dim(\mathbb{R}^4) - 2 = 4 - 2 = 2$.

Problem 2: (5 points) Consider the following set of 2×2 matrices,

$$S = \left\{ \left[\begin{array}{cc} a & a+2b+1 \\ a+2b & a \end{array} \right] \mid a,b \in \mathbb{R} \right\}.$$

Is the set S a vector space under the usual matrix addition and scalar multiplication? Explain your answer.

Solution: NO. Because the above set is missing the zero vector i.e., $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin S$. Suppose, if possible $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$. Then there exists $a, b \in \mathbb{R}$ such that $\begin{bmatrix} a & a+2b+1 \\ a+2b & a \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Then we must have a = 0, a + 2b = 0, a + 2b + 1 = 0. The first and second equation imply that a = 0, b = 0. Then the third equation implies that 1 = 0!, Contradiction. **Problem 3:** (5 points) Is it true that span{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)} = \mathbb{R}^4 ? Explain your answer. **Solution:** No, because we need at least four vectors to span the \mathbb{R}^4 .

Problem 4:(5 points) True or False? "Let $v_1, v_2, v_3, v_4 \in \mathbb{R}^4$ such that $span\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$, then v_1, v_2, v_3, v_4 are linearly independent". Explain your answer.

Solution: Yes. Because if v_1, v_2, v_3, v_4 are linearly dependent then we can get rid of one of them, say v_4 , and still they will span the same space i.e., $span\{v_1, v_2, v_3\} = span\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$. But three vectors can not span the \mathbb{R}^4 , contradiction! Therefore v_1, v_2, v_3, v_4 must be linearly independent.