Name: \qquad August 14, 2014

All unnecessary electronics must be turned off and out of sight. This means no cellular phones, iPods, wearing of headphones, or anything of the sort. This is a closed book and closed notes test.

Problem 1:(5 points) Find the dimension of the following vector space

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}=x_{2}, x_{2}=x_{3}, x_{1}+x_{3}=2 x_{2}\right\}
$$

Explain your answer.
Solution: We know that $\operatorname{dim}\left(\mathbb{R}^{4}\right)=4$. In the above set V, two independent linear conditions are imposed on \mathbb{R}^{4}, namely $x_{1}=x_{2}$ and $x_{2}=x_{3}$ (note that the condition $x_{1}+x_{3}=2 x_{2}$ can be obtained from $x_{1}=x_{2}, x_{2}=x_{3}$ just by adding them). Therefore $\operatorname{dim}(V)=\operatorname{dim}\left(\mathbb{R}^{4}\right)-2=4-2=2$.

Problem 2:(5 points) Consider the following set of 2×2 matrices,

$$
S=\left\{\left.\left[\begin{array}{cc}
a & a+2 b+1 \\
a+2 b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Is the set S a vector space under the usual matrix addition and scalar multiplication? Explain your answer.
Solution: NO. Because the above set is missing the zero vector i.e., $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \notin S$.
Suppose, if possible $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in S$. Then there exists $a, b \in \mathbb{R}$ such that $\left[\begin{array}{cc}a & a+2 b+1 \\ a+2 b & a\end{array}\right]=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Then we must have $a=0, a+2 b=0, a+2 b+1=0$. The first and second equation imply that $a=0, b=0$. Then the third equation implies that $1=0$!, Contradiction.

Problem 3:(5 points) Is it true that $\operatorname{span}\{(1,1,0,0),(0,1,1,0),(0,0,1,1)\}=\mathbb{R}^{4}$? Explain your answer.
Solution: No, because we need at least four vectors to span the \mathbb{R}^{4}.

Problem 4:(5 points) True or False? "Let $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{R}^{4}$ such that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\mathbb{R}^{4}$, then $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent". Explain your answer.

Solution: Yes. Because if $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent then we can get rid of one of them, say v_{4}, and still they will span the same space i.e., $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\mathbb{R}^{4}$. But three vectors can not span the \mathbb{R}^{4}, contradiction! Therefore $v_{1}, v_{2}, v_{3}, v_{4}$ must be linearly independent.

