Name: August 7, 2014

All unnecessary electronics must be turned off and out of sight. This means no cellular phones, iPods, wearing of headphones, or anything of the sort. This is a closed book and closed notes test.

Problem 1: Find the multiplicative inverse (i.e., z^{-1}) of the complex number $z=\frac{1}{2}+i \frac{\sqrt{3}}{2}$.
Solution: The multiplicative inverse of z is given by

$$
\begin{aligned}
z^{-1} & =\frac{1}{\frac{1}{2}+i \frac{\sqrt{3}}{2}} \\
& =\frac{\frac{1}{2}-i \frac{\sqrt{3}}{2}}{\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)} \\
& =\frac{\frac{1}{2}-i \frac{\sqrt{3}}{2}}{\frac{1}{4}+\frac{3}{4}} \\
& =\frac{1}{2}-i \frac{\sqrt{3}}{2}
\end{aligned}
$$

Problem 2: Solve the equation $z^{10}+1024=0$.

Solution: We rewrite the above equation as

$$
z^{10}=-1024=1024 e^{i \pi}
$$

Solving the above equation we obtain

$$
z=(1024)^{1 / 10} e^{i \frac{\pi}{10}+i \frac{2 k \pi}{10}}=2 e^{i \frac{\pi}{10}+i \frac{2 k \pi}{10}}
$$

where $k=0,1, \ldots, 9$.

Problem 3: Let a be a real number. Construct a polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ of degree at most two such that $p(-1)=a, p(-2)=a^{2}$, and $p(-3)=a^{3}$.

Solution: The quadratic polynomial that satisfies the above conditions is

$$
\begin{aligned}
p(z) & =a \frac{(z+2)(z+3)}{(-1+2)(-1+3)}+a^{2} \frac{(z+1)(z+3)}{(-2+1)(-2+3)}+a^{3} \frac{(z+1)(z+2)}{(-3+1)(-3+2)} \\
& =\frac{a}{2}(z+2)(z+3)-a^{2}(z+1)(z+3)+\frac{a^{3}}{2}(z+1)(z+2) .
\end{aligned}
$$

