Name:

____August 7, 2014

All unnecessary electronics must be turned off and out of sight. This means no cellular phones, iPods, wearing of headphones, or anything of the sort. This is a closed book and closed notes test.

Problem 1: Find the multiplicative inverse (i.e., z^{-1}) of the complex number $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.

Solution: The multiplicative inverse of z is given by

$$z^{-1} = \frac{1}{\frac{1}{2} + i\frac{\sqrt{3}}{2}}$$

= $\frac{\frac{1}{2} - i\frac{\sqrt{3}}{2}}{\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)}$
= $\frac{\frac{1}{2} - i\frac{\sqrt{3}}{2}}{\frac{1}{4} + \frac{3}{4}}$
= $\frac{1}{2} - i\frac{\sqrt{3}}{2}$

Problem 2: Solve the equation $z^{10} + 1024 = 0$.

Solution: We rewrite the above equation as

$$z^{10} = -1024 = 1024e^{i\pi}.$$

Solving the above equation we obtain

$$z = (1024)^{1/10} e^{i\frac{\pi}{10} + i\frac{2k\pi}{10}} = 2e^{i\frac{\pi}{10} + i\frac{2k\pi}{10}},$$

where k = 0, 1, ..., 9.

Problem 3: Let *a* be a real number. Construct a polynomial $p : \mathbb{C} \to \mathbb{C}$ of degree at most two such that $p(-1) = a, p(-2) = a^2$, and $p(-3) = a^3$.

Solution: The quadratic polynomial that satisfies the above conditions is

$$p(z) = a \frac{(z+2)(z+3)}{(-1+2)(-1+3)} + a^2 \frac{(z+1)(z+3)}{(-2+1)(-2+3)} + a^3 \frac{(z+1)(z+2)}{(-3+1)(-3+2)}$$
$$= \frac{a}{2}(z+2)(z+3) - a^2(z+1)(z+3) + \frac{a^3}{2}(z+1)(z+2).$$