Name: \qquad September 11, 2014

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- check that you have all 6 pages of the exam. (The number of pages includes this cover page.)

During the exam:

- Keep your eyes on your own exam!
- No notes/books or electronics AT ALL!

Note that the exam length is exactly 1 hr 30 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	Total
Score					

Problem 1:(20 points) TRUE or FALSE? If the statement is true then give a proof. If the statement is false then give a counterexample.
(a)(5 points) Let A and B be 2×2 matrices then $A B=B A$.

Solution: FALSE. Let us consider the matrices

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Then

$$
\begin{gathered}
A B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-3 & -4
\end{array}\right] \\
B A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
3 & -4
\end{array}\right] .
\end{gathered}
$$

Clearly $A B \neq B A$.
(b)(5 points) $V=\{c(1,3): c>0\}$ is a vector space.

Solution: FALSE. It is not a vector space because the additive identity $(0,0,0) \notin V$ (Also notice that V does not have additive inverses).
(c)(5 points) If $\left\{v_{1}, v_{2}\right\} \subset \mathbb{R}^{3}$ is an orthonormal set of vectors in \mathbb{R}^{3} then v_{1}, v_{2} are independent.

Solution: TRUE. Let $c_{1} v_{1}+c_{2} v_{2}=0$. Taking inner product with v_{1} on both sides we have

$$
\begin{array}{ll}
& c_{1}\left\langle v_{1}, v_{1}\right\rangle+c_{2}\left\langle v_{2}, v_{1}\right\rangle=\left\langle 0, v_{1}\right\rangle \\
\Rightarrow \quad & c_{1}=0 \quad\left(\text { since }\left\langle v_{1}, v_{1}\right\rangle=1,\left\langle v_{2}, v_{1}\right\rangle=0\right)
\end{array}
$$

Similarly, taking inner product with v_{2} we have $c_{2}=0$. Therefore $\left\{v_{1}, v_{2}\right\}$ are independent.
(d)(5 points) A linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ can not be injective.

Solution: TRUE. Using the dimension formula

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}\left(\mathbb{R}^{3}\right) \\
\Rightarrow \quad & \operatorname{dim}(\operatorname{null}(T))=3-\operatorname{dim}(\operatorname{range}(T)) .
\end{aligned}
$$

Since $\operatorname{range}(T) \subset \mathbb{R}^{2}, \operatorname{dim}(\operatorname{range}(T)) \leq 2$. Therefore $\operatorname{dim}(\operatorname{null}(T)) \geq 1$ i.e., $\operatorname{null}(T) \neq\{0\}$. So T is not injective.

Problem 2:(20 points) Consider the following matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

(a) (2 points) The matrix A can be considered as a linear map $A: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$. What are the values of p and q ?
(b) (3 points) Define the null space of the linear transformation A.
(c) (8 points) Solve the system of equations

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(d) (3 points) What is a basis of $\operatorname{null}(A)$?
(e) (2 points) Then what is the dimension of the null space of A ?
(f) (2 points) Therefore the dimension of Range (A) is \qquad
Solution:
(a) Since A is a 3×3 matrix, we have $p=3, q=3{ }^{1}$
(b) $\operatorname{null}(A)=\left\{v \in \mathbb{R}^{3}: A v=0\right\}$.
(c) From the matrix itself we can say that x_{1}, x_{3} are pivot variables and x_{2} is a free variable. Let us assign $x_{2}=1$. Then the system of equations become

$$
\begin{array}{r}
x_{1}+2+x_{3}=0 \\
x_{3}=0
\end{array}
$$

Solution of the above system is $x_{3}=0, x_{1}=-2$. We have already assigned $x_{2}=1$. Therefore $(-2,1,0)$ is a solution to the above system of equations. Note that there was only one free variable so we have only one independent solution, namely $(-2,1,0)$. All other solutions are given by $\{c(-2,1,0): c \in \mathbb{R}\}$.
(d) From the above we can say that the basis of $\operatorname{null}(A)$ is $\{(-2,1,0)\}$.
(e) Since there is only one vector in the basis of $\operatorname{null}(A), \operatorname{dim}(\operatorname{null}(A))=1$.
(f) From the dimension formula

$$
\operatorname{dim}(\operatorname{range}(A))=\operatorname{dim}\left(\mathbb{R}^{3}\right)-\operatorname{dim}(\operatorname{null}(A))=3-1=2
$$

[^0]Problem 3:(20 points) Let U and W be subspaces of a finite dimensional vector space V over \mathbb{R}.
(a) (3 points) Take $u, w \in U \cap W$. Show that $a u+b w \in U \cap W$ for any $a, b \in \mathbb{R}$.
(b) (2 points) Conclude that $U \cap W$ is a subspace of U as well as $U \cap W$ is also a subspace of W.
(\star) Assume that $\operatorname{dim}(U \cap W)=k, \operatorname{dim}(U)=k+m$, and $\operatorname{dim}(W)=k+n$.
(c) (2 points) Take a basis $\mathcal{B}=\left\{u_{1}, \ldots, u_{k}\right\}$ of $U \cap W$. Extend \mathcal{B} to a basis \mathcal{B}_{U} of U. Also extend \mathcal{B} as a basis \mathcal{B}_{W} of W.
(d) (3 points) Write down $B_{U} \cup \mathcal{B}_{W}$. How many vectors are there in $B_{U} \cup \mathcal{B}_{W}$?
(e) (2 points) Argue that $\operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right) \subset U+W$.
(f) (3 points) Prove that $U+W \subset \operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)$.
(g) (1 points) Conclude that $\operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)=U+W$.
(h) (4 points) Conclude that $\operatorname{dim}(U+W) \leq \operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)$.

Solution:

(a) Let $u, w \in U \cap W$. Since $u, w \in U$ and it is given to us that U is a subspace, we have $a u+b w \in U$ for any $a, b \in \mathbb{R}$. Also $u, w \in W$ and W is a subspace, therefore $a u+b w \in W$ for any $a, b \in \mathbb{R}$. Consequently $a u+b w \in U \cap W$.
(b) It is obvious that $U \cap W \subset U$ also $U \cap W \subset W$. From the part (a), we can conclude that $U \cap W$ is a subspace of U as well as $U \cap W$ is a subspace of W.
(c) Since $U \cap W$ is a subspace of U and $U \cap W$ is also a subspace of W we can extend the basis $\mathcal{B}=$ $\left\{u_{1}, \ldots, u_{k}\right\}$ of $U \cap W$ to a basis $\mathcal{B}_{U}=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}\right\}$ of U. Also we can extend \mathcal{B} to a basis $\mathcal{B}_{W}=\left\{u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{n}\right\}$ of W.
(d)

$$
\mathcal{B}_{U} \cup \mathcal{B}_{W}=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\} .
$$

The number of vectors in $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ is $m+n+k$.
(e) Since $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m} \in U$ and $w_{1}, \ldots, w_{n} \in W$, we have $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n} \in U+W$. Therefore $\operatorname{span}\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\} \subset U+W$.
(f) Take a vector $v \in U+W$, we want to show that $v \in \operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)$. Since $v \in U+W$, by the definition of $U+W$ we can write $v=u+w$, where $u \in U$ and $w \in W$. Since $u \in U$ and \mathcal{B}_{U} is a basis of U, there exist scalars $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m} \in \mathbb{R}$ such that

$$
u=a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} v_{1}+\cdots+b_{m} v_{m}
$$

Similarly we know that $w \in W$ and \mathcal{B}_{W} is a basis of W. Therefore there exist scalars $c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{n} \in$ \mathbb{R} such that

$$
w=c_{1} u_{1}+\cdots+c_{k} u_{k}+d_{1} w_{1}+\cdots+d_{n} w_{n}
$$

So finally we have

$$
\begin{aligned}
v= & u+w \\
= & {\left[a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} v_{1}+\cdots+b_{m} v_{m}\right] } \\
& +\left[c_{1} u_{1}+\cdots+c_{k} u_{k}+d_{1} w_{1}+\cdots+d_{n} w_{n}\right] \\
= & \left(a_{1}+c_{1}\right) u_{1}+\cdots+\left(a_{k}+c_{k}\right) u_{k}+b_{1} v_{1}+\cdots+b_{m} v_{m}+d_{1} w_{1}+\cdots+d_{n} w_{n}
\end{aligned}
$$

Therefore $v \in \operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)$. Consequently $U+W \subset \operatorname{span}\left(B_{U} \cup B_{W}\right)$.
(g) From part (e) and part (f) we can conclude that $\operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)=U+W$.
(h) Since $U+W=\operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)$ and $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ has $k+m+n$ many vectors, we have $\operatorname{dim}(U+W) \leq k+m+n \underbrace{2}$ On the other hand from the assumption (\star) we see that

$$
\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)=(k+m)+(k+n)-k=k+m+n
$$

Therefore

$$
\operatorname{dim}(U+W) \leq \operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)
$$

[^1]Problem 4: (20 points) Consider the vectors $f_{1}=(1,0,0), f_{2}=(1,2,0), f_{3}=(1,1,3)$.
(a) (2 points) Construct a 3×3 matrix M such that columns of A are given by the above vectors.
(b) (6 points) Is M a normal matrix?
(c) (2 points) Compute the determinant of M.
(d) (2 points) Is $\left\{f_{1}, f_{2}, f_{3}\right\}$ a basis of \mathbb{R}^{3}.
(e) (8 points) Using Gram-Schmidt Orthogonalization on $\left\{f_{1}, f_{2}, f_{3}\right\}$, find an othonormal basis of \mathbb{R}^{3}.

Solution:

(a) The matrix A is given by

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

(b) Since all the entries of A are real numbers,

$$
A^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 1 & 3
\end{array}\right]
$$

We can see that

$$
\begin{aligned}
& A A^{*}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
3 & 3 & 3 \\
3 & 5 & 3 \\
3 & 3 & 9
\end{array}\right] \\
& A^{*} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 5 & 3 \\
1 & 2 & 11
\end{array}\right] .
\end{aligned}
$$

Since $A A^{*} \neq A^{*} A$, the matrix A is not normal.
(c)

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right|=6
$$

(d) Since $\operatorname{det}(A) \neq 0$, the columns of A i.e., f_{1}, f_{2}, f_{3} are independent. So $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a set of three independent vectors in a three dimensional vector space \mathbb{R}^{3}. Therefore $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis of \mathbb{R}^{3}.
(e)

$$
\begin{aligned}
\tilde{f}_{1} & =(1,0,0) \\
\tilde{f}_{2} & =f_{2}-\frac{\left\langle f_{2}, \tilde{f}_{1}\right\rangle}{\left\langle\tilde{f}_{1}, \tilde{f}_{1}\right\rangle} \tilde{f}_{1} \\
& =(1,2,0)-\frac{1}{1}(1,0,0) \\
& =(0,2,0) \\
\tilde{f}_{3} & =f_{3}-\frac{\left\langle f_{3}, \tilde{f}_{2}\right\rangle}{\left\langle\tilde{f}_{2}, \tilde{f}_{2}\right\rangle} \tilde{f}_{2}-\frac{\left\langle f_{3}, \tilde{f}_{1}\right\rangle}{\left\langle\tilde{f}_{1}, \tilde{f}_{1}\right\rangle} \tilde{f}_{1} \\
& =(1,1,3)-\frac{2}{4}(0,2,0)-\frac{1}{1}(1,0,0) \\
& =(0,0,3)
\end{aligned}
$$

Now the vectors $\tilde{f}_{1}, \tilde{f}_{2}, \tilde{f}_{3}$ are orthogonal to each other but they are not normalized. To normalize them we divide each vector by its norm. And finally the orthonormal basis we obtained by Gram-Schmidt orthogonalization is $\{(1,0,0),(0,1,0),(0,0,1)\}$.

[^0]: ${ }^{1}$ If A is an $m \times n$ matrix then $p=n, q=m$

[^1]: ${ }^{2}$ If the vectors in $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ are independent then we would have $\operatorname{dim}(U+W)=k+m+n$. But we do not know whether the vectors in $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ are independent or not. If the vectors in $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ are dependent then we can throw out the dependent vectors from $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ and still the remaining vectors will span $U+W$. The dimension of $U+W$ is equal to the number of independent vectors in $\mathcal{B}_{U} \cup \mathcal{B}_{W}$ which is less or equal to $k+m+n$. So in any case $\operatorname{dim}(U+W) \leq k+m+n$.

