Name: \qquad September 11, 2014

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- check that you have all 6 pages of the exam. (The number of pages includes this cover page.)

During the exam:

- Keep your eyes on your own exam!
- No notes/books or electronics AT ALL!

Note that the exam length is exactly 1 hr 30 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	Total
Score					

Problem 1:(20 points) TRUE or FALSE? If the statement is true then give a proof. If the statement is false then give a counterexample.
(a)(5 points) Let A and B be 2×2 matrices then $A B=B A$.

Solution:

(b)(5 points) $V=\{c(1,3): c>0\}$ is a vector space.

Solution:

(c)(5 points) If $\left\{v_{1}, v_{2}\right\} \subset \mathbb{R}^{3}$ is an orthonormal set of vectors in \mathbb{R}^{3} then v_{1}, v_{2} are independent.

Solution:

(d)(5 points) A linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ can not be injective.

Solution:

Problem 2:(20 points) Consider the following matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

(a) (2 points) The matrix A can be considered as a linear map $A: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$. What are the values of p and q ?
(b) (3 points) Define the null space of the linear transformation A.
(c) (8 points) Solve the system of equations

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

(d) (3 points) What is a basis of $\operatorname{null}(A)$?
(e) (2 points) Then what is the dimension of the null space of A ?
(f) (2 points) Therefore the dimension of $\operatorname{Range}(A)$ is \qquad
Solution:

Problem 3:(20 points) Let U and W be subspaces of a finite dimensional vector space V over \mathbb{R}.
(a) (3 points) Take $u, w \in U \cap W$. Show that $a u+b w \in U \cap W$ for any $a, b \in \mathbb{R}$.
(b) (2 points) Conclude that $U \cap W$ is a subspace of U as well as $U \cap W$ is also a subspace of W.
(\star) Assume that $\operatorname{dim}(U \cap W)=k, \operatorname{dim}(U)=k+m$, and $\operatorname{dim}(W)=k+n$.
(c) (2 points) Take a basis $\mathcal{B}=\left\{u_{1}, \ldots, u_{k}\right\}$ of $U \cap W$. Extend \mathcal{B} to a basis \mathcal{B}_{U} of U. Also extend \mathcal{B} as a basis \mathcal{B}_{W} of W.
(d) (3 points) Write down $B_{U} \cup \mathcal{B}_{W}$. How many vectors are there in $B_{U} \cup \mathcal{B}_{W}$?
(e) (2 points) Argue that $\operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right) \subset U+W$.
(f) (3 points) Prove that $U+W \subset \operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)$.
(g) (1 points) Conclude that $\operatorname{span}\left(\mathcal{B}_{U} \cup \mathcal{B}_{W}\right)=U+W$.
(h) (4 points) Conclude that $\operatorname{dim}(U+W) \leq \operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)$.

Solution:

Problem 4: (20 points) Consider the vectors $f_{1}=(1,0,0), f_{2}=(1,2,0), f_{3}=(1,1,3)$.
(a) (2 points) Construct a 3×3 matrix M such that columns of A are given by the above vectors.
(b) (6 points) Is M a normal matrix?
(c) (2 points) Compute the determinant of M.
(d) (2 points) Is $\left\{f_{1}, f_{2}, f_{3}\right\}$ a basis of \mathbb{R}^{3}.
(e) (8 points) Using Gram-Schmidt Orthogonalization on $\left\{f_{1}, f_{2}, f_{3}\right\}$, find an othonormal basis of \mathbb{R}^{3}.

Solution:

