Name:

September 11, 2014

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- check that you have all 6 pages of the exam. (The number of pages includes this cover page.)

During the exam:

- Keep your eyes on your own exam!
- No notes/books or electronics AT ALL!

Note that the exam length is exactly 1 hr 30 mins. When you are told to stop, you must stop **IMMEDI-ATELY**. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	Total
Score					

Problem 1: (20 points) TRUE or FALSE? If the statement is true then give a proof. If the statement is false then give a counterexample.

(a)(5 points) Let A and B be 2×2 matrices then AB = BA.

Solution:

 $(b)(5 \text{ points}) V = \{c(1,3): c > 0\}$ is a vector space.

(c)(5 points) If $\{v_1, v_2\} \subset \mathbb{R}^3$ is an orthonormal set of vectors in \mathbb{R}^3 then v_1, v_2 are independent.

Solution:

(d)(5 points) A linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$ can not be injective.

Problem 2:(20 points) Consider the following matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{array} \right].$$

- (a) (2 points) The matrix A can be considered as a linear map $A : \mathbb{R}^p \to \mathbb{R}^q$. What are the values of p and q?
- (b) (3 points) Define the null space of the linear transformation A.
- (c) (8 points) Solve the system of equations

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- (d) (3 points) What is a basis of null(A)?
- (e) (2 points) Then what is the dimension of the null space of A?
- (f) (2 points) Therefore the dimension of Range(A) is _____.

Problem 3: (20 points) Let U and W be subspaces of a finite dimensional vector space V over \mathbb{R} .

- (a) (3 points) Take $u, w \in U \cap W$. Show that $au + bw \in U \cap W$ for any $a, b \in \mathbb{R}$.
- (b) (2 points) Conclude that $U \cap W$ is a subspace of U as well as $U \cap W$ is also a subspace of W.
- (*) Assume that $dim(U \cap W) = k$, dim(U) = k + m, and dim(W) = k + n.
- (c) (2 points) Take a basis $\mathcal{B} = \{u_1, \ldots, u_k\}$ of $U \cap W$. Extend \mathcal{B} to a basis \mathcal{B}_U of U. Also extend \mathcal{B} as a basis \mathcal{B}_W of W.
- (d) (3 points) Write down $B_U \cup \mathcal{B}_W$. How many vectors are there in $B_U \cup \mathcal{B}_W$?
- (e) (2 points) Argue that $span(\mathcal{B}_U \cup \mathcal{B}_W) \subset U + W$.
- (f) (3 points) Prove that $U + W \subset span(\mathcal{B}_U \cup \mathcal{B}_W)$.
- (g) (1 points) Conclude that $span(\mathcal{B}_U \cup \mathcal{B}_W) = U + W$.
- (h) (4 points) Conclude that $dim(U+W) \leq dim(U) + dim(W) dim(U \cap W)$.

Problem 4: (20 points) Consider the vectors $f_1 = (1, 0, 0), f_2 = (1, 2, 0), f_3 = (1, 1, 3).$

- (a) (2 points) Construct a 3×3 matrix M such that columns of A are given by the above vectors.
- (b) (6 points) Is M a normal matrix?
- (c) (2 points) Compute the determinant of M.
- (d) (2 points) Is $\{f_1, f_2, f_3\}$ a basis of \mathbb{R}^3 .
- (e) (8 points) Using Gram-Schmidt Orthogonalization on $\{f_1, f_2, f_3\}$, find an othonormal basis of \mathbb{R}^3 .