Problem 7.8: The claim is false. Consider the vector space $V=\mathbb{R}^{2}$, and consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as $T(x, y)=(y, x)$. The basis of T with respect to the canonical basis is $T=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. The matrix T has all zeros in the diagonal. However $\operatorname{det}(T)=-1 \neq 0$. Therefore T is invertible.

Problem 7.9: The claim is false. Consider the matrix $T=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$. All diagonal elements of T are nonzero. But $\operatorname{det}(T)=0$, therefore T is not invertible.

Problem 7.10: Let $\operatorname{dim}(V)=n$. According to the given condition T has n distinct eigenvalues. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the distinct eigenvalues of T, and $v_{1}, v_{2}, \ldots, v_{n}$ be the corresponding eigenvectors i.e., $T\left(v_{i}\right)=\lambda_{i} v_{i}$ for all $i=1,2, \ldots, n$. Since the eigenvalues are distinct, $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a set of n linearly independent vectors in V. But $\operatorname{dim}(V)=n$, therefore $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ forms a basis of V.

It is also given that all eigenvectors of T are also the eigenvectors of S (possibly different eigenvalues). Therefore there exist scalars $\mu_{1}, \mu_{2}, \ldots, \mu_{n} \in \mathbb{F}$ such that $S\left(v_{i}\right)=\mu_{i} v_{i}$ for all $i=1,2, \ldots, n$.

We see that for all $i=1,2, \ldots, n$

$$
\begin{array}{ll}
& T \circ S\left(v_{i}\right)=T\left(S\left(v_{i}\right)\right)=T\left(\mu_{i} v_{i}\right)=\mu_{i} T\left(v_{i}\right)=\mu_{i} \lambda_{i} v_{i} . \\
\text { and } & S \circ T\left(v_{i}\right)=S\left(T\left(v_{i}\right)=S\left(\lambda_{i} v_{i}\right)=\lambda_{i} S\left(v_{i}\right)=\lambda_{i} \mu_{i} v_{i} .\right.
\end{array}
$$

Therefore $T \circ S\left(v_{i}\right)=S \circ T\left(v_{i}\right)$ for all $i=1,2, \ldots, n$.
Let $v \in V$ be an arbitrarily chosen vector. Since $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of V, there exist scalars $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}$ such that $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$. We have just shown that $T \circ S\left(v_{i}\right)=S \circ T\left(v_{i}\right)$ for all $i=1,2, \ldots, n$. Therefore

$$
\begin{aligned}
T \circ S(v) & =T \circ S\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& =c_{1} T \circ S\left(v_{1}\right)+c_{2} T \circ S\left(v_{2}\right)+\cdots+c_{n} T \circ S\left(v_{n}\right) \\
& =c_{1} S \circ T\left(v_{1}\right)+c_{2} S \circ T\left(v_{2}\right)+\cdots+c_{n} S \circ T\left(v_{n}\right) \\
& =S \circ T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& =S \circ T(v) .
\end{aligned}
$$

Therefore $T \circ S(v)=S \circ T(v)$ for any $v \in V$. In other words $T \circ S=S \circ T$.

Problem 8.2: We know that any matrix B is invertible if and only if $\operatorname{det}(B) \neq 0$. We also know that $\operatorname{det}\left(B^{T}\right)=\operatorname{det}(B)$ and $\operatorname{det}(B C)=\operatorname{det}(B) \operatorname{det}(C)$. Using these two properties we can say that

$$
\begin{array}{ll}
& A^{T} A \text { is invertible } \\
\Longleftrightarrow & \operatorname{det}\left(A^{T} A\right) \neq 0 \\
\Longleftrightarrow & \operatorname{det}\left(A^{T}\right) \operatorname{det}(A) \neq 0 \\
\Longleftrightarrow & {[\operatorname{det}(A)]^{2} \neq 0} \\
\Longleftrightarrow & \operatorname{det}(A) \neq 0 \\
\Longleftrightarrow & A \text { is invertible. }
\end{array}
$$

Problem 8.3: The statement is false. For example, consider

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \text { and } B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

Then $\operatorname{det}(A)=1, \operatorname{det}(B)=0$. But

$$
A+B=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

and $\operatorname{det}(A+B)=3 \neq \operatorname{det}(A)+\operatorname{det}(B)$.

Problem 8.4: The statement is false. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and $r=3$. Then $\operatorname{det}(A)=1$ and $\operatorname{det}(3 A)=\left|\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right|=9$. But $3 \operatorname{det}(A)=3$. Therefore $\operatorname{det}(3 A) \neq 3 \operatorname{det}(A)$.

