Problem 7.8: The claim is false. Consider the vector space $V = \mathbb{R}^2$, and consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ as T(x, y) = (y, x). The basis of T with respect to the canonical basis is $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The matrix T has all zeros in the diagonal. However $det(T) = -1 \neq 0$. Therefore T is invertible.

Problem 7.9: The claim is false. Consider the matrix $T = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$. All diagonal elements of T are nonzero. But det(T) = 0, therefore T is not invertible.

Problem 7.10: Let dim(V) = n. According to the given condition T has n distinct eigenvalues. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the distinct eigenvalues of T, and v_1, v_2, \ldots, v_n be the corresponding eigenvectors i.e., $T(v_i) = \lambda_i v_i$ for all $i = 1, 2, \ldots, n$. Since the eigenvalues are distinct, $\{v_1, v_2, \ldots, v_n\}$ is a set of n linearly independent vectors in V. But dim(V) = n, therefore $\{v_1, v_2, \ldots, v_n\}$ forms a basis of V.

It is also given that all eigenvectors of T are also the eigenvectors of S (possibly different eigenvalues). Therefore there exist scalars $\mu_1, \mu_2, \ldots, \mu_n \in \mathbb{F}$ such that $S(v_i) = \mu_i v_i$ for all $i = 1, 2, \ldots, n$.

We see that for all $i = 1, 2, \ldots, n$

$$T \circ S(v_i) = T(S(v_i)) = T(\mu_i v_i) = \mu_i T(v_i) = \mu_i \lambda_i v_i.$$

and
$$S \circ T(v_i) = S(T(v_i) = S(\lambda_i v_i) = \lambda_i S(v_i) = \lambda_i \mu_i v_i.$$

Therefore $T \circ S(v_i) = S \circ T(v_i)$ for all i = 1, 2, ..., n.

Let $v \in V$ be an arbitrarily chosen vector. Since $\{v_1, v_2, \ldots, v_n\}$ is a basis of V, there exist scalars $c_1, c_2, \ldots, c_n \in \mathbb{F}$ such that $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$. We have just shown that $T \circ S(v_i) = S \circ T(v_i)$ for all $i = 1, 2, \ldots, n$. Therefore

$$T \circ S(v) = T \circ S(c_1v_1 + c_2v_2 + \dots + c_nv_n)$$

= $c_1T \circ S(v_1) + c_2T \circ S(v_2) + \dots + c_nT \circ S(v_n)$
= $c_1S \circ T(v_1) + c_2S \circ T(v_2) + \dots + c_nS \circ T(v_n)$
= $S \circ T(c_1v_1 + c_2v_2 + \dots + c_nv_n)$
= $S \circ T(v).$

Therefore $T \circ S(v) = S \circ T(v)$ for any $v \in V$. In other words $T \circ S = S \circ T$.

Problem 8.2: We know that any matrix B is invertible if and only if $det(B) \neq 0$. We also know that $det(B^T) = det(B)$ and det(BC) = det(B)det(C). Using these two properties we can say that

$$A^{T}A \text{ is invertible}$$

$$\iff \det(A^{T}A) \neq 0$$

$$\iff \det(A^{T})\det(A) \neq 0$$

$$\iff [\det(A)]^{2} \neq 0$$

$$\iff \det(A) \neq 0$$

$$\iff A \text{ is invertible.}$$

Problem 8.3: The statement is false. For example, consider

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ and } B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Then det(A) = 1, det(B) = 0. But

$$A + B = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

and $det(A + B) = 3 \neq det(A) + det(B)$.

Problem 8.4: The statement is false. Let

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

and r = 3. Then det(A) = 1 and $det(3A) = \begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} = 9$. But 3det(A) = 3. Therefore $det(3A) \neq 3det(A)$.