Problem 6.1: Let dim(U) = m and dim(V) = n, where $m \le n$. Let $\{u_1, \ldots, u_m\}$ be a basis of U. We can extend it to a basis of V, say $\{u_1, \ldots, u_m, v_1, \ldots, v_{n-m}\}$. We know that $S: U \to W$ is a linear map, i.e., $S(u_1), \ldots, S(u_m)$ are known.

We would like to find a linear map $T: V \to W$ such that T(u) = S(u) for all $u \in U$. It is enough to define T on the basis of V, i.e., it is enough to specify $T(u_1), \ldots, T(u_m), T(v_1), \ldots, T(v_{n-m})$. Let us define $T: V \to W$ as

$$T(u_i) = S(u_i) \quad \forall i = 1, \dots, m$$
and
$$T(v_j) = 0_W \quad \forall j = 1, \dots, n - m.$$

$$(1)$$

Then $T: V \to W$ is a well defined linear map (because we have specified the action of Ton the basis vectors of V). Also the action of T on the basis of U is same as that of S i.e., $T(u_i) = S(u_i)$ for all i = 1, ..., m. Now if $u \in U$, then we can write $u = c_1u_1 + \cdots + c_mu_m$ for some scalars $c_i \in \mathbb{F}$, i = 1, ..., m. Then from the definition of T we can see that

$$T(u) = T(c_1u_1 + \dots + c_mu_m) = c_1T(u_1) + \dots + c_mT(u_m) = c_1S(u_1) + \dots + c_mS(u_m) \text{ (from (1))} = S(c_1u_1 + \dots + c_mu_m) = S(u),$$

i.e, T(u) = S(u) for all $u \in U$.

Remark: You can call the above result as *Operator extension theorem*. Basically we had an operator $S: U \to W$ defined on a subspace (i.e., U) of V. Now we have extended it to an operator T which is defined on the big space V such that $T|_U = S$.

Problem 6.2: Consider the following equation

$$c_1 T(v_1) + c_2 T(v_2) + \dots + c_n T(v_n) = 0_W.$$
(2)

Now if we want to prove that $T(v_1), \ldots, T(v_n)$ are linearly independent, then we need to show that $c_i = 0$ for all $i = 1, \ldots, n$. We can rewrite the equation (2) as

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = 0_W.$$

The above implies that $c_1v_1 + c_2v_2 + \cdots + c_nv_n \in null(T)$. But it is given that T is injective, therefore $null(T) = \{0_V\}$. Hence

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0_V.$$

But it is also given that v_1, v_2, \ldots, v_n are linearly independent. Therefore we must have $c_i = 0$ for all $i = 1, \ldots, n$. We are done.

Problem 6.4: Since $T: V \to W$ is a linear map, we have $T(v_i) \in W$ for all i = 1, ..., n and hence $span\{T(v_1), \ldots, T(v_n)\} \subset W$.

Conversely, let us take $w \in W$. We need to show that $w \in span\{T(v_1), \ldots, T(v_n)\}$. Since $T: V \to W$ is surjective, there must exist $v \in V$ such that T(v) = w. We know that $span\{v_1, \ldots, v_n\} = V$, therefore we can write $v = c_1v_1 + \cdots + c_nv_n$ for some scalars $c_i \in \mathbb{F}$, $i = 1, \ldots, n$. Consequently

$$w = T(v)$$

= $T(c_1v_1 + \dots + c_nv_n)$
= $c_1T(v_1) + \dots + c_nT(v_n)$

The above implies that $w \in span\{T(v_1), \ldots, T(v_n)\}$. Hence the proof.

Problem 6.8: Suppose both T and S are invertible. Then T^{-1} and S^{-1} exists and they are linear maps from V to V. Therefore we can define $S^{-1} \circ T^{-1} : V \to V$. Now we see that

$$(S^{-1} \circ T^{-1}) \circ (T \circ S) = S^{-1} \circ (T^{-1} \circ T) \circ S = S^{-1} \circ I_V \circ S = S^{-1} \circ S = I_V$$

and
$$(T \circ S) \circ (S^{-1} \circ T^{-1}) = T \circ (S \circ S^{-1}) \circ T^{-1} = T \circ T^{-1} = I_V.$$

Therefore $S^{-1} \circ T^{-1}$ is the inverse of $T \circ S$. In other words $T \circ S$ is invertible.

Conversely, suppose $T \circ S$ is invertible. We want to show that both S and T are invertible. Since $S \in \mathcal{L}(V, V)$ and $T \in \mathcal{L}(V, V)$, using theorem 6.7.6 it is enough to show that both S and T are injective.

Suppose S is not injective. There exist a nonzero vector $v \in V$ such that S(v) = 0. But then $(T \circ S)(v) = T(S(v)) = T(0) = 0$, which implies that $T \circ S$ is also not injective - a contradiction. Because we know that $T \circ S$ is invertible, therefore it must be injective.

Suppose T is not injective then T is not surjective either (using theorem 6.7.6) i.e., $range(T) \subsetneq V$. In other words, dim(range(T)) < dim(V). Now we know that $range(T \circ S) \subset range(T)$.¹ Therefore $range(T \circ S) \subsetneq V$, i.e., $T \circ S$ is not surjective - a contradiction. Because we know that $T \circ S$ is invertible, therefore it must be surjective.

Problem 7.3: Suppose λ is an eigenvalue of T, and v is a corresponding eigenvector. Then we have $T(v) = \lambda v$. Since T is invertible, we have

$$T^{-1}(T(v)) = T^{-1}(\lambda v)$$

i.e., $v = \lambda T^{-1}(v)$ (since $T^{-1} \in \mathcal{L}(V, V)$, $T^{-1}(cv) = cT^{-1}(v)$ for any $c \in \mathbb{F}$)
i.e., $\frac{1}{\lambda}v = T^{-1}(v)$.

¹This follows simply from the definition of range. Let $T(S(v)) \in range(T \circ S)$, then $v \in V$. Now since $v \in V$ and $S : V \to V$, we have $S(v) \in V$. Therefore $T(S(v)) \in range(T)$

Therefore $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

Conversely, let $\frac{1}{\lambda}$ be an eigenvalue of T^{-1} and w be a corresponding eigenvector. Then

$$T^{-1}(w) = \frac{1}{\lambda}w$$

i.e., $T(T^{-1}(w)) = T\left(\frac{1}{\lambda}w\right)$
i.e., $w = \frac{1}{\lambda}T(w)$
i.e., $\lambda w = T(w)$.

Therefore λ is an eigenvalue of T.

Problem 7.4: Since every vector $v \in V$ is an eigenvector of T, there exist scalars $\lambda_v \in \mathbb{F}$ such that $T(v) = \lambda_v v^2$. Note that the scalars λ_v may depend on the vector v. We need to show that all λ_v are same. In other words, we have to prove that $\lambda_v = \lambda_w$ even if $v \neq w$.

Let us consider two independent vectors $v, w \in V$. Then we know that $v - w \in V$, and therefore v - w is an eigenvector of T (since it is given that all vectors in V are eigenvectors of T). So there exists a scalar $\lambda_{v-w} \in \mathbb{F}$ such that $T(v - w) = \lambda_{v-w}(v - w)$. But we know that $T(v) = \lambda_v v$ and $T(w) = \lambda_w w$. Therefore

$$T(v - w) = \lambda_{v-w}(v - w)$$

$$\Rightarrow \quad T(v) - T(w) = \lambda_{v-w}(v - w)$$

$$\Rightarrow \quad \lambda_{v}v - \lambda_{w}w = \lambda_{v-w}(v - w)$$

$$\Rightarrow \quad (\lambda_{v} - \lambda_{v-w})v + (\lambda_{v-w} - \lambda_{w})w = 0.$$

But v and w are chosen to be independent, therefore both $\lambda_v - \lambda_{v-w} = 0$ and $\lambda_{v-w} - \lambda_w = 0$. Which implies that $\lambda_v = \lambda_{v-w} = \lambda_w$ i.e., $\lambda_v = \lambda_w$. Therefore all λ_v s are the same. Let us rewrite the 'same' λ_v as λ^3 . Then we have $T(v) = \lambda v$ for all $v \in V$. Or we can say that $T = \lambda I_V$ i.e., T is a scalar multiple⁴ of the identity map on V.

Problem 7.6: Let $\mu \in \mathbb{C}$ be an eigenvalue of T. Then there exists a nonzero vector $v \in V$ such that $T(v) = \mu v$. Therefore

$$T^{2}(v) = T(T(v)) = T(\mu v) = \mu T(v) = \mu^{2} v$$

:
$$T^{k}(v) = \mu^{k} v \quad \forall \ k \in \mathbb{N}.$$

Now if $p(z) \in \mathbb{C}[z]$ is a polynomial of degree *n* i.e., $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$,

²Notice that I have denoted the scalars as λ_v . I put the subscript v in order to indicate that the scalar λ_v may depend on v. In other words the same scalar may not work for two different vectors.

³It means that λ_v s are no longer v dependent. They are all same.

⁴The scalar is λ .

then using the above equations we have

$$p(T)v = (a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 I)(v)$$

= $a_n T^n(v) + a_{n-1} T^{n-1}(v) + \dots + a_1 T(v) + a_0 v$
= $a_n \mu^n v + a_{n-1} \mu^{n-1} v + \dots + a_1 \mu v + a_0 v$
= $(a_n \mu^n + a_{n-1} \mu^{n-1} + \dots + a_1 \mu + a_0) v$
= $p(\mu)v.$

The above equation suggests that $p(\mu)$ is an eigenvalue of p(T).

Conversely, suppose $\lambda \in \mathbb{C}$ is an eigenvalue of p(T). We want to show that there exists $\mu \in \mathbb{C}$ such that $p(\mu) = \lambda$ and μ is an eigenvalue of T. Since λ is an eigenvalue of p(T), there exists a nonzero vector $v \in V$ such that $p(T)v = \lambda v$ i.e., $(p(T) - \lambda I)v = 0_V$. Suppose $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$. Then using the fundamental theorem of algebra we can say that there exist $\mu_1, \mu_2, \ldots, \mu_n \in \mathbb{C}$ such that

$$p(z) - \lambda = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 - \lambda = a_n (z - \mu_1) (z - \mu_2) \cdots (z - \mu_n).$$
(3)

So

$$(p(T) - \lambda I)v = 0_V$$

$$\Rightarrow \quad (T - \mu_1 I)(T - \mu_2 I) \cdots (T - \mu_n I)v = 0_V$$

Since $v \neq 0_V$, the above implies that $(T - \mu_1 I)(T - \mu_2 I) \cdots (T - \mu_n I)$ is not injective, hence not invertible. Therefore at least one of $(T - \mu_1 I), (T - \mu_2 I), \ldots, (T - \mu_n I)$ is not injective ⁵. Suppose $(T - \mu_k I)$ is non injective. Then there exists a non zero vector $w \in V$ such that

$$(T - \mu_k I)w = 0_V$$

$$\Rightarrow \quad T(w) = \mu_k w.$$

In other words μ_k is an eigenvalue of T. Also from (3) we notice that $p(\mu_k) - \lambda = 0$ i.e., $p(\mu_k) = \lambda$.

⁵Because if all of them are injective i.e., invertible, then by problem 6.8 we can say that $(T - \mu_1 I)(T - \mu_2 I) \cdots (T - \mu_n I)$ is invertible