
MAT 67 Homework 3
August 25, 2014 Indrajit Jana

Problem 6.1: Let dim(U) = m and dim(V ) = n, where m ≤ n. Let {u1, . . . , um} be a
basis of U . We can extend it to a basis of V , say {u1, . . . , um, v1, . . . , vn−m}. We know that
S : U → W is a linear map, i.e, S(u1), . . . , S(um) are known.

We would like to find a linear map T : V → W such that T (u) = S(u) for all u ∈ U . It is
enough to define T on the basis of V , i.e., it is enough to specify T (u1), . . . T (um), T (v1), . . . , T (vn−m).
Let us define T : V → W as

T (ui) = S(ui) ∀ i = 1, . . . ,m (1)

and T (vj) = 0W ∀ j = 1, . . . , n−m.

Then T : V → W is a well defined linear map (because we have specified the action of T
on the basis vectors of V ). Also the action of T on the basis of U is same as that of S i.e.,
T (ui) = S(ui) for all i = 1, . . . ,m. Now if u ∈ U , then we can write u = c1u1 + · · · + cmum
for some scalars ci ∈ F, i = 1, . . . ,m. Then from the definition of T we can see that

T (u) = T (c1u1 + · · ·+ cmum)

= c1T (u1) + · · ·+ cmT (um)

= c1S(u1) + · · ·+ cmS(um) (from (1))

= S(c1u1 + · · ·+ cmum)

= S(u),

i.e, T (u) = S(u) for all u ∈ U .

Remark: You can call the above result as Operator extension theorem. Basically we had an
operator S : U → W defined on a subspace (i.e., U) of V . Now we have extended it to an
operator T which is defined on the big space V such that T |U = S.

Problem 6.2: Consider the following equation

c1T (v1) + c2T (v2) + · · ·+ cnT (vn) = 0W . (2)

Now if we want to prove that T (v1), . . . , T (vn) are linearly independent, then we need to
show that ci = 0 for all i = 1, . . . , n. We can rewrite the equation (2) as

T (c1v1 + c2v2 + · · ·+ cnvn) = 0W .

The above implies that c1v1 + c2v2 + · · ·+ cnvn ∈ null(T ). But it is given that T is injective,
therefore null(T ) = {0V }. Hence

c1v1 + c2v2 + · · ·+ cnvn = 0V .
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But it is also given that v1, v2, . . . , vn are linearly independent. Therefore we must have
ci = 0 for all i = 1, . . . , n. We are done.

Problem 6.4: Since T : V → W is a linear map, we have T (vi) ∈ W for all i = 1, . . . , n
and hence span{T (v1), . . . , T (vn)} ⊂ W .

Conversely, let us take w ∈ W . We need to show that w ∈ span{T (v1), . . . , T (vn)}. Since
T : V → W is surjective, there must exist v ∈ V such that T (v) = w. We know that
span{v1, . . . , vn} = V , therefore we can write v = c1v1 + · · · + cnvn for some scalars ci ∈ F,
i = 1, . . . , n. Consequently

w = T (v)

= T (c1v1 + · · ·+ cnvn)

= c1T (v1) + · · ·+ cnT (vn).

The above implies that w ∈ span{T (v1), . . . , T (vn)}. Hence the proof.

Problem 6.8: Suppose both T and S are invertible. Then T−1 and S−1 exists and they
are linear maps from V to V . Therefore we can define S−1 ◦ T−1 : V → V . Now we see that

(S−1 ◦ T−1) ◦ (T ◦ S) = S−1 ◦ (T−1 ◦ T ) ◦ S = S−1 ◦ IV ◦ S = S−1 ◦ S = IV

and (T ◦ S) ◦ (S−1 ◦ T−1) = T ◦ (S ◦ S−1) ◦ T−1 = T ◦ T−1 = IV .

Therefore S−1 ◦ T−1 is the inverse of T ◦ S. In other words T ◦ S is invertible.
Conversely, suppose T ◦S is invertible. We want to show that both S and T are invertible.

Since S ∈ L(V, V ) and T ∈ L(V, V ), using theorem 6.7.6 it is enough to show that both S
and T are injective.

Suppose S is not injective. There exist a nonzero vector v ∈ V such that S(v) = 0. But
then (T ◦ S)(v) = T (S(v)) = T (0) = 0, which implies that T ◦ S is also not injective - a
contradiction. Because we know that T ◦ S is invertible, therefore it must be injective.

Suppose T is not injective then T is not surjective either (using theorem 6.7.6) i.e.,
range(T ) $ V . In other words, dim(range(T )) < dim(V ). Now we know that range(T ◦
S) ⊂ range(T ). 1 Therefore range(T ◦S) $ V , i.e., T ◦S is not surjective - a contradiction.
Because we know that T ◦ S is invertible, therefore it must be surjective.

Problem 7.3: Suppose λ is an eigenvalue of T , and v is a corresponding eigenvector.
Then we have T (v) = λv. Since T is invertible, we have

T−1(T (v)) = T−1(λv)

i.e., v = λT−1(v) (since T−1 ∈ L(V, V ), T−1(cv) = cT−1(v) for any c ∈ F)

i.e.,
1

λ
v = T−1(v).

1This follows simply from the definition of range. Let T (S(v)) ∈ range(T ◦S), then v ∈ V . Now since v ∈ V and S : V → V ,
we have S(v) ∈ V . Therefore T (S(v)) ∈ range(T )
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Therefore 1
λ

is an eigenvalue of T−1.

Conversely, let 1
λ

be an eigenvalue of T−1 and w be a corresponding eigenvector. Then

T−1(w) =
1

λ
w

i.e., T (T−1(w)) = T

(
1

λ
w

)
i.e., w =

1

λ
T (w)

i.e., λw = T (w).

Therefore λ is an eigenvalue of T .

Problem 7.4: Since every vector v ∈ V is an eigenvector of T , there exist scalars λv ∈ F
such that T (v) = λvv

2. Note that the scalars λv may depend on the vector v. We need to
show that all λv are same. In other words, we have to prove that λv = λw even if v 6= w.

Let us consider two independent vectors v, w ∈ V . Then we know that v − w ∈ V , and
therefore v−w is an eigenvector of T (since it is given that all vectors in V are eigenvectors
of T ). So there exists a scalar λv−w ∈ F such that T (v − w) = λv−w(v − w). But we know
that T (v) = λvv and T (w) = λww. Therefore

T (v − w) = λv−w(v − w)

⇒ T (v)− T (w) = λv−w(v − w)

⇒ λvv − λww = λv−w(v − w)

⇒ (λv − λv−w)v + (λv−w − λw)w = 0.

But v and w are chosen to be independent, therefore both λv−λv−w = 0 and λv−w−λw = 0.
Which implies that λv = λv−w = λw i.e., λv = λw. Therefore all λv s are the same. Let us
rewrite the ‘same’ λv as λ 3. Then we have T (v) = λv for all v ∈ V . Or we can say that
T = λIV i.e., T is a scalar multiple4 of the identity map on V .

Problem 7.6: Let µ ∈ C be an eigenvalue of T . Then there exists a nonzero vector
v ∈ V such that T (v) = µv. Therefore

T 2(v) = T (T (v)) = T (µv) = µT (v) = µ2v
...

T k(v) = µkv ∀ k ∈ N.

Now if p(z) ∈ C[z] is a polynomial of degree n i.e., p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

2Notice that I have denoted the scalars as λv . I put the subscript v in order to indicate that the scalar λv may depend on
v. In other words the same scalar may not work for two different vectors.

3It means that λv s are no longer v dependent. They are all same.
4The scalar is λ.
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then using the above equations we have

p(T )v = (anT
n + an−1T

n−1 + · · ·+ a1T + a0I)(v)

= anT
n(v) + an−1T

n−1(v) + · · ·+ a1T (v) + a0v

= anµ
nv + an−1µ

n−1v + · · ·+ a1µv + a0v

= (anµ
n + an−1µ

n−1 + · · ·+ a1µ+ a0)v

= p(µ)v.

The above equation suggests that p(µ) is an eigenvalue of p(T ).
Conversely, suppose λ ∈ C is an eigenvalue of p(T ). We want to show that there exists

µ ∈ C such that p(µ) = λ and µ is an eigenvalue of T . Since λ is an eigenvalue of p(T ),
there exists a nonzero vector v ∈ V such that p(T )v = λv i.e., (p(T )− λI)v = 0V . Suppose
p(z) = anz

n + an−1z
n−1 + · · ·+ a1z+ a0. Then using the fundamental theorem of algebra we

can say that there exist µ1, µ2, . . . , µn ∈ C such that

p(z)− λ = anz
n + an−1z

n−1 + · · ·+ a1z + a0 − λ = an(z − µ1)(z − µ2) · · · (z − µn). (3)

So

(p(T )− λI)v = 0V

⇒ (T − µ1I)(T − µ2I) · · · (T − µnI)v = 0V .

Since v 6= 0V , the above implies that (T −µ1I)(T −µ2I) · · · (T −µnI) is not injective, hence
not invertible. Therefore at least one of (T − µ1I), (T − µ2I), . . . , (T − µnI) is not injective
5. Suppose (T − µkI) is non injective. Then there exists a non zero vector w ∈ V such that

(T − µkI)w = 0V

⇒ T (w) = µkw.

In other words µk is an eigenvalue of T . Also from (3) we notice that p(µk) − λ = 0 i.e.,
p(µk) = λ.

5Because if all of them are injective i.e., invertible, then by problem 6.8 we can say that (T − µ1I)(T − µ2I) · · · (T − µnI) is
invertible
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