Problem 6.1: Let $\operatorname{dim}(U)=m$ and $\operatorname{dim}(V)=n$, where $m \leq n$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of U. We can extend it to a basis of V, say $\left\{u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n-m}\right\}$. We know that $S: U \rightarrow W$ is a linear map, i.e, $S\left(u_{1}\right), \ldots, S\left(u_{m}\right)$ are known.

We would like to find a linear map $T: V \rightarrow W$ such that $T(u)=S(u)$ for all $u \in U$. It is enough to define T on the basis of V, i.e., it is enough to specify $T\left(u_{1}\right), \ldots T\left(u_{m}\right), T\left(v_{1}\right), \ldots, T\left(v_{n-m}\right)$. Let us define $T: V \rightarrow W$ as

$$
\begin{align*}
T\left(u_{i}\right) & =S\left(u_{i}\right) \quad \forall i=1, \ldots, m \tag{1}\\
\text { and } T\left(v_{j}\right) & =0_{W} \quad \forall j=1, \ldots, n-m .
\end{align*}
$$

Then $T: V \rightarrow W$ is a well defined linear map (because we have specified the action of T on the basis vectors of V). Also the action of T on the basis of U is same as that of S i.e., $T\left(u_{i}\right)=S\left(u_{i}\right)$ for all $i=1, \ldots, m$. Now if $u \in U$, then we can write $u=c_{1} u_{1}+\cdots+c_{m} u_{m}$ for some scalars $c_{i} \in \mathbb{F}, i=1, \ldots, m$. Then from the definition of T we can see that

$$
\begin{aligned}
T(u) & =T\left(c_{1} u_{1}+\cdots+c_{m} u_{m}\right) \\
& =c_{1} T\left(u_{1}\right)+\cdots+c_{m} T\left(u_{m}\right) \\
& =c_{1} S\left(u_{1}\right)+\cdots+c_{m} S\left(u_{m}\right) \quad(\text { from (11) }) \\
& =S\left(c_{1} u_{1}+\cdots+c_{m} u_{m}\right) \\
& =S(u)
\end{aligned}
$$

i.e, $T(u)=S(u)$ for all $u \in U$.

Remark: You can call the above result as Operator extension theorem. Basically we had an operator $S: U \rightarrow W$ defined on a subspace (i.e., U) of V. Now we have extended it to an operator T which is defined on the big space V such that $\left.T\right|_{U}=S$.

Problem 6.2: Consider the following equation

$$
\begin{equation*}
c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)=0_{W} . \tag{2}
\end{equation*}
$$

Now if we want to prove that $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent, then we need to show that $c_{i}=0$ for all $i=1, \ldots, n$. We can rewrite the equation (2) as

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=0_{W} .
$$

The above implies that $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \in \operatorname{null}(T)$. But it is given that T is injective, therefore $\operatorname{null}(T)=\left\{0_{V}\right\}$. Hence

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0_{V} .
$$

But it is also given that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent. Therefore we must have $c_{i}=0$ for all $i=1, \ldots, n$. We are done.

Problem 6.4: Since $T: V \rightarrow W$ is a linear map, we have $T\left(v_{i}\right) \in W$ for all $i=1, \ldots, n$ and hence $\operatorname{span}\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\} \subset W$.

Conversely, let us take $w \in W$. We need to show that $w \in \operatorname{span}\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$. Since $T: V \rightarrow W$ is surjective, there must exist $v \in V$ such that $T(v)=w$. We know that $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=V$, therefore we can write $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$ for some scalars $c_{i} \in \mathbb{F}$, $i=1, \ldots, n$. Consequently

$$
\begin{aligned}
w & =T(v) \\
& =T\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right) \\
& =c_{1} T\left(v_{1}\right)+\cdots+c_{n} T\left(v_{n}\right)
\end{aligned}
$$

The above implies that $w \in \operatorname{span}\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$. Hence the proof.

Problem 6.8: Suppose both T and S are invertible. Then T^{-1} and S^{-1} exists and they are linear maps from V to V. Therefore we can define $S^{-1} \circ T^{-1}: V \rightarrow V$. Now we see that

$$
\begin{aligned}
& \\
\text { and } \quad\left(S^{-1} \circ T^{-1}\right) \circ(T \circ S) & =S^{-1} \circ\left(T^{-1} \circ T\right) \circ S=S^{-1} \circ I_{V} \circ S=S^{-1} \circ S=I_{V} \\
(T \circ S) \circ\left(S^{-1} \circ T^{-1}\right) & =T \circ\left(S \circ S^{-1}\right) \circ T^{-1}=T \circ T^{-1}=I_{V} .
\end{aligned}
$$

Therefore $S^{-1} \circ T^{-1}$ is the inverse of $T \circ S$. In other words $T \circ S$ is invertible.
Conversely, suppose $T \circ S$ is invertible. We want to show that both S and T are invertible. Since $S \in \mathcal{L}(V, V)$ and $T \in \mathcal{L}(V, V)$, using theorem 6.7.6 it is enough to show that both S and T are injective.

Suppose S is not injective. There exist a nonzero vector $v \in V$ such that $S(v)=0$. But then $(T \circ S)(v)=T(S(v))=T(0)=0$, which implies that $T \circ S$ is also not injective - a contradiction. Because we know that $T \circ S$ is invertible, therefore it must be injective.

Suppose T is not injective then T is not surjective either (using theorem 6.7.6) i.e., $\operatorname{range}(T) \varsubsetneqq V$. In other words, $\operatorname{dim}(\operatorname{range}(T))<\operatorname{dim}(V)$. Now we know that range $(T \circ$ $S) \subset \operatorname{range}(T) .{ }^{1}$ Therefore $\operatorname{range}(T \circ S) \varsubsetneqq V$, i.e., $T \circ S$ is not surjective - a contradiction. Because we know that $T \circ S$ is invertible, therefore it must be surjective.

Problem 7.3: Suppose λ is an eigenvalue of T, and v is a corresponding eigenvector. Then we have $T(v)=\lambda v$. Since T is invertible, we have

$$
\begin{array}{ll}
& T^{-1}(T(v))=T^{-1}(\lambda v) \\
\text { i.e., } & v=\lambda T^{-1}(v) \quad\left(\text { since } T^{-1} \in \mathcal{L}(V, V), T^{-1}(c v)=c T^{-1}(v) \text { for any } c \in \mathbb{F}\right) \\
\text { i.e., } & \frac{1}{\lambda} v=T^{-1}(v) .
\end{array}
$$

[^0]Therefore $\frac{1}{\lambda}$ is an eigenvalue of T^{-1}.
Conversely, let $\frac{1}{\lambda}$ be an eigenvalue of T^{-1} and w be a corresponding eigenvector. Then

$$
\begin{array}{ll}
& T^{-1}(w)=\frac{1}{\lambda} w \\
\text { i.e., } & T\left(T^{-1}(w)\right)=T\left(\frac{1}{\lambda} w\right) \\
\text { i.e., } & w=\frac{1}{\lambda} T(w) \\
\text { i.e., } & \lambda w=T(w) .
\end{array}
$$

Therefore λ is an eigenvalue of T.

Problem 7.4: Since every vector $v \in V$ is an eigenvector of T, there exist scalars $\lambda_{v} \in \mathbb{F}$ such that $T(v)=\lambda_{v} v{ }^{2}$. Note that the scalars λ_{v} may depend on the vector v. We need to show that all λ_{v} are same. In other words, we have to prove that $\lambda_{v}=\lambda_{w}$ even if $v \neq w$.

Let us consider two independent vectors $v, w \in V$. Then we know that $v-w \in V$, and therefore $v-w$ is an eigenvector of T (since it is given that all vectors in V are eigenvectors of T). So there exists a scalar $\lambda_{v-w} \in \mathbb{F}$ such that $T(v-w)=\lambda_{v-w}(v-w)$. But we know that $T(v)=\lambda_{v} v$ and $T(w)=\lambda_{w} w$. Therefore

$$
\begin{array}{ll}
& T(v-w)=\lambda_{v-w}(v-w) \\
\Rightarrow & T(v)-T(w)=\lambda_{v-w}(v-w) \\
\Rightarrow \quad & \lambda_{v} v-\lambda_{w} w=\lambda_{v-w}(v-w) \\
\Rightarrow \quad & \left(\lambda_{v}-\lambda_{v-w}\right) v+\left(\lambda_{v-w}-\lambda_{w}\right) w=0 .
\end{array}
$$

But v and w are chosen to be independent, therefore both $\lambda_{v}-\lambda_{v-w}=0$ and $\lambda_{v-w}-\lambda_{w}=0$. Which implies that $\lambda_{v}=\lambda_{v-w}=\lambda_{w}$ i.e., $\lambda_{v}=\lambda_{w}$. Therefore all $\lambda_{v} \mathrm{~s}$ are the same. Let us rewrite the 'same' λ_{v} as λ^{3}. Then we have $T(v)=\lambda v$ for all $v \in V$. Or we can say that $T=\lambda I_{V}$ i.e., T is a scalar multiple ${ }^{4}$ of the identity map on V.

Problem 7.6: Let $\mu \in \mathbb{C}$ be an eigenvalue of T. Then there exists a nonzero vector $v \in V$ such that $T(v)=\mu v$. Therefore

$$
\begin{aligned}
& T^{2}(v)=T(T(v))=T(\mu v)=\mu T(v)=\mu^{2} v \\
& \vdots \\
& T^{k}(v)=\mu^{k} v \quad \forall k \in \mathbb{N}
\end{aligned}
$$

Now if $p(z) \in \mathbb{C}[z]$ is a polynomial of degree n i.e., $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$,

[^1]then using the above equations we have
\[

$$
\begin{aligned}
p(T) v & =\left(a_{n} T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0} I\right)(v) \\
& =a_{n} T^{n}(v)+a_{n-1} T^{n-1}(v)+\cdots+a_{1} T(v)+a_{0} v \\
& =a_{n} \mu^{n} v+a_{n-1} \mu^{n-1} v+\cdots+a_{1} \mu v+a_{0} v \\
& =\left(a_{n} \mu^{n}+a_{n-1} \mu^{n-1}+\cdots+a_{1} \mu+a_{0}\right) v \\
& =p(\mu) v .
\end{aligned}
$$
\]

The above equation suggests that $p(\mu)$ is an eigenvalue of $p(T)$.
Conversely, suppose $\lambda \in \mathbb{C}$ is an eigenvalue of $p(T)$. We want to show that there exists $\mu \in \mathbb{C}$ such that $p(\mu)=\lambda$ and μ is an eigenvalue of T. Since λ is an eigenvalue of $p(T)$, there exists a nonzero vector $v \in V$ such that $p(T) v=\lambda v$ i.e., $(p(T)-\lambda I) v=0_{V}$. Suppose $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$. Then using the fundamental theorem of algebra we can say that there exist $\mu_{1}, \mu_{2}, \ldots, \mu_{n} \in \mathbb{C}$ such that

$$
\begin{equation*}
p(z)-\lambda=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}-\lambda=a_{n}\left(z-\mu_{1}\right)\left(z-\mu_{2}\right) \cdots\left(z-\mu_{n}\right) . \tag{3}
\end{equation*}
$$

So

$$
\begin{aligned}
& (p(T)-\lambda I) v=0_{V} \\
\Rightarrow \quad & \left(T-\mu_{1} I\right)\left(T-\mu_{2} I\right) \cdots\left(T-\mu_{n} I\right) v=0_{V} .
\end{aligned}
$$

Since $v \neq 0_{V}$, the above implies that $\left(T-\mu_{1} I\right)\left(T-\mu_{2} I\right) \cdots\left(T-\mu_{n} I\right)$ is not injective, hence not invertible. Therefore at least one of $\left(T-\mu_{1} I\right),\left(T-\mu_{2} I\right), \ldots,\left(T-\mu_{n} I\right)$ is not injective ${ }^{5}$. Suppose $\left(T-\mu_{k} I\right)$ is non injective. Then there exists a non zero vector $w \in V$ such that

$$
\begin{aligned}
& \left(T-\mu_{k} I\right) w=0_{V} \\
\Rightarrow \quad & T(w)=\mu_{k} w
\end{aligned}
$$

In other words μ_{k} is an eigenvalue of T. Also from (3) we notice that $p\left(\mu_{k}\right)-\lambda=0$ i.e., $p\left(\mu_{k}\right)=\lambda$.

[^2]
[^0]: ${ }^{1}$ This follows simply from the definition of range. Let $T(S(v)) \in \operatorname{range}(T \circ S)$, then $v \in V$. Now since $v \in V$ and $S: V \rightarrow V$, we have $S(v) \in V$. Therefore $T(S(v)) \in \operatorname{range}(T)$

[^1]: ${ }^{2}$ Notice that I have denoted the scalars as λ_{v}. I put the subscript v in order to indicate that the scalar λ_{v} may depend on v. In other words the same scalar may not work for two different vectors.
 ${ }^{3}$ It means that $\lambda_{v} \mathrm{~s}$ are no longer v dependent. They are all same.
 ${ }^{4}$ The scalar is λ.

[^2]: ${ }^{5}$ Because if all of them are injective i.e., invertible, then by problem 6.8 we can say that $\left(T-\mu_{1} I\right)\left(T-\mu_{2} I\right) \cdots\left(T-\mu_{n} I\right)$ is invertible

