Problem 4.2: Let us take two arbitrary vectors $v_{1}, v_{2} \in W_{1} \cap W_{2}$ and two scalars $a, b \in \mathbb{F}$. We need to show that $a v_{1}+b v_{2} \in W_{1} \cap W_{2}$.

Since $v_{1}, v_{2} \in W_{1} \cap W_{2}$, we have $v_{1} \in W_{1}, v_{1} \in W_{2}, v_{2} \in W_{1}, v_{2} \in W_{2}$. Now since W_{1} is a vector space and $v_{1}, v_{2} \in W_{1}$ we must have $a v_{1}+b v_{2} \in W_{1}$. For the similar reason, we also have $a v_{1}+b v_{2} \in W_{2}$. Consequently, $a v_{1}+b v_{2} \in W_{1} \cap W_{2}$.

Problem 4.4: The claim is false.
Consider the vector space \mathbb{R}^{2} over the field \mathbb{R}. Now define

$$
\begin{align*}
& W_{1}:=\operatorname{span}\{(1,0)\}=\{a(1,0): a \in \mathbb{R}\} \tag{1}\\
& W_{2}:=\operatorname{span}\{(0,1)\}=\{b(0,1): b \in \mathbb{R}\} \tag{2}\\
& W_{3}:=\operatorname{span}\{(1,1)\}=\{c(1,1): c \in \mathbb{R}\} . \tag{3}
\end{align*}
$$

Since $(1,0)$ and $(1,1)$ are two independent vectors in \mathbb{R}^{2}, $\operatorname{span}\{(1,0),(1,1)\}=\mathbb{R}^{2}$. But $\operatorname{span}\{(1,0),(1,1)\}=\left\{c_{1}(1,0)+c_{2}(0,1): c_{1}, c_{2} \in \mathbb{R}\right\}=W_{1}+W_{3}$. Therefore $\mathbb{R}^{2}=W_{1}+W_{3}$. Also we can see that $W_{1} \cap W_{3}=\{(0,0)\}$
[Take $\left(x_{1}, x_{2}\right) \in W_{1} \cap W_{3}$. Then $\left(x_{1}, x_{2}\right) \in W_{1}$ as well as $\left(x_{1}, x_{2}\right) \in W_{3}$. Therefore there exists $a, c \in \mathbb{R}$ such that $\left(x_{1}, x_{2}\right)=a(1,0)$ and $\left(x_{1}, x_{2}\right)=c(1,1)$. Which implies that $a(1,0)=$ $c(1,1)$ i.e, $a=0, c=0$. Therefore $\left(x_{1}, x_{2}\right)=(0,0)$. So any vector $\left(x_{1}, x_{2}\right) \in W_{1} \cap W_{3}$ is equal to $(0,0)$. Therefore $\left.W_{1} \cap W_{3}=\{(0,0)\}\right]$.

So using the the proposition 4.4 .7 we can say that $\mathbb{R}^{2}=W_{1} \oplus W_{3}$.
Similarly, $\mathbb{R}^{2}=W_{2} \oplus W_{3}$. Therefore $W_{1} \oplus W_{3}=\mathbb{R}^{2}=W_{2} \oplus W_{3}$. But obviously from definitions (1), (3) we can see that $W_{1} \neq W_{3}$.

Problem 5.1: Let us define

$$
\begin{aligned}
w_{1} & :=v_{1}-v_{2} \\
w_{2} & :=v_{2}-v_{3} \\
\vdots & \\
w_{n-1} & :=v_{n-1}-v_{n} \\
w_{n} & :=v_{n} .
\end{aligned}
$$

We want to show that $\operatorname{span}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=V$. Since each w_{i} is a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{n}$, we have $w_{i} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for all $i=1,2, \ldots, n$. Therefore by Lemma 5.1.2 we have

$$
\operatorname{span}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subset \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} .
$$

Now we want to show that $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \operatorname{span}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Let us take a vector $v \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then v can be written as a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$ i.e., there exist scalars $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}$ such that

$$
v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} .
$$

Our goal is to write v as a linear combination of $w_{1}, w_{2}, \ldots, w_{n}$. So first let us write each v_{i} as a linear combination of $w_{1}, w_{2}, \ldots, w_{n}$. We notice that

$$
\begin{aligned}
v_{n} & =w_{n} \\
v_{n-1} & =w_{n-1}+w_{n} \\
\vdots & \\
v_{2} & =w_{2}+w_{3}+\cdots+w_{n} \\
v_{1} & =w_{1}+w_{2}+\cdots+w_{n}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
v & =c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \\
& =c_{1}\left(w_{1}+w_{2}+\cdots+w_{n}\right)+c_{2}\left(w_{2}+w_{3}+\cdots+w_{n}\right)+\cdots+c_{n} w_{n} \\
& =c_{1} w_{1}+\left(c_{1}+c_{2}\right) w_{2}+\left(c_{1}+c_{2}+c_{3}\right) w_{3}+\cdots+\left(c_{1}+c_{2}+\cdots+c_{n}\right) w_{n}
\end{aligned}
$$

The last line is a linear combination of $w_{1}, w_{2}, \ldots, w_{n}$. Therefore $v \in \operatorname{span}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, and hence $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, w_{n}\right\} \subset \operatorname{span}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$.

Problem 5.3: [This problem relies on the same idea as problem 4.4] Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of V. Define the spaces

$$
\begin{aligned}
U_{1} & =\operatorname{span}\left\{v_{1}\right\} \\
U_{2} & =\operatorname{span}\left\{v_{2}\right\} \\
\vdots & \\
U_{n} & =\operatorname{span}\left\{v_{n}\right\} .
\end{aligned}
$$

Since each $v_{i} \in V$, each U_{i} is a subspace of V. Now since $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of V, each $v \in V$ can be written as a unique linear combination of $v_{1}, v_{2}, \ldots, v_{n}$ i.e., $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$. But $c_{i} v_{i} \in U_{i}$ for each $i=1,2, \ldots, n$. Therefore $V=$ $U_{1} \oplus+U_{2} \oplus+\cdots+\oplus U_{n}$.

Problem 5.4: Since it is given that U is a subspace of V, we know that $U \subset V$. So if we want to show that $U=V$, we need to show that $V \subset U$.

Now let $\operatorname{dim}(V)=n$, then we have $\operatorname{dim}(U)=n$ (since it is given that $\operatorname{dim}(U)=\operatorname{dim}(V))$. Now let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of U. Then $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a set of independent of vectors in U. But it is given that $U \subset V$. Therefore $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is also a set of
n independent vectors in V. But $\operatorname{dim}(V)=n$, therefore $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is also a basis of V (see Theorem 5.4.4). Which implies that any vector $v \in V$ can be written as $v=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}$ uniquely for some scalars $c_{i} \in \mathbb{F}$. But $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is also a basis of U, therefore $v=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n} \in U$. Consequently, $V \subset U$.

Problem 5.6: Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be bases of U and V respectively. Now suppose if possible $U \cap V=\{0\}$. We will find a contradiction. Consider the following equation

$$
\begin{equation*}
c_{1} u_{1}+\cdots+c_{5} u_{5}+d_{1} v_{1}+\cdots+d_{5} v_{5}=0 \tag{4}
\end{equation*}
$$

The above equation can be written as

$$
\begin{equation*}
c_{1} u_{1}+\cdots+c_{5} u_{5}=\left(-d_{1}\right) v_{1}+\cdots+\left(-d_{5}\right) v_{5} . \tag{5}
\end{equation*}
$$

From the above equation we notice that the vector $c_{1} u_{1}+\cdots+c_{5} u_{5}$ is a linear combination of the vectors v_{1}, \ldots, v_{5}, therefore $c_{1} u_{1}+\cdots+c_{5} u_{5} \in V$. But naturally $c_{1} u_{1}+\cdots+c_{5} u_{5} \in U$. Therefore $c_{1} u_{1}+\cdots+c_{5} u_{5} \in U \cap V$. But we assumed that $U \cap V=\{0\}$. Therefore

$$
\begin{equation*}
c_{1} u_{1}+\cdots+c_{5} u_{5}=0 \tag{6}
\end{equation*}
$$

Since $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a basis of U, u_{1}, \ldots, u_{5} are linearly independent. Therefore (6) is true only of $c_{1}=0, \ldots, c_{5}=0$. Then (5) gives us

$$
\left(-d_{1}\right) v_{1}+\cdots+\left(-d_{5}\right) v_{5}=0
$$

which is true only if $d_{1}=0, \ldots, d_{5}=0$ (since $\left\{v_{1}, \ldots, v_{5}\right\}$ is a basis i.e., they are independent). So finally we have $c_{1}=0, \ldots, c_{5}=0, d_{1}=0, \ldots, d_{5}=0$. Therefore from (4) we can say that $u_{1}, \ldots, u_{5}, v_{1}, \ldots, v_{5}$ are linearly independent. But it is a contradiction, because all of them belong to \mathbb{R}^{9} and we can not have ten linearly independent vectors in \mathbb{R}^{9}. Therefore we must have $U \cap V \neq\{0\}$.

Alternative Proof

Since both U and V are subspaces of $\mathbb{R}^{9}, U+V$ is also a subspace of \mathbb{R}^{9}. Now using the Theorem 5.4.6 we have

$$
\begin{aligned}
\operatorname{dim}(U+V) & =\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V) \\
& =5+5-\operatorname{dim}(U \cap V) \\
\text { i.e., } \quad \operatorname{dim}(U \cap V) & =10-\operatorname{dim}(U+V) .
\end{aligned}
$$

Since $U+V$ is a subspace of $\mathbb{R}^{9}, \operatorname{dim}(U+V) \leq 9$. Therefore $\operatorname{dim}(U \cap V)=10-\operatorname{dim}(U+V) \geq$ $10-9=1$. Since $\operatorname{dim}(U \cap V) \geq 1$, we must have $U \cap V \neq\{0\}$.

Remark: The geometric idea: Let U be an m dimensional subspace of an n dimensional vector space W. Now if we want to roam inside W but don't want to hit U then we have only $n-m$ degrees of freedom. In the above problem $W=\mathbb{R}^{9}$ and U is a five dimensional subspace. Now if we want to roam inside V which avoids U (means $V \cap U=\{0\}$) then V can be at most $9-5=4$ dimensional subspace. If V is five dimensional then it must intersect U.

Problem 5.7: [This problem uses the same idea as problem 5.6] We will prove it by induction. * \backslash Let U and W be two subspaces of V. We will show that $\operatorname{dim}(U+W) \leq$ $\operatorname{dim}(U)+\operatorname{dim}(W)$. Let $\operatorname{dim}(U)=k, \operatorname{dim}(W)=l$ and $\left\{u_{1}, \ldots, u_{k}\right\},\left\{w_{1}, \ldots, w_{l}\right\}$ be bases of U and W respectively. Then any vector $u \in U$ is a linear combination of u_{1}, \ldots, u_{k} and any vector $w \in W$ is a linear combination of w_{1}, \ldots, w_{l}. Therefore any vector $u+w \in U+W$ is a linear combination of $u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{l}$. Therefore $\operatorname{span}\left\{u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{l}\right\}=U+W$.

Now $u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{l}$ may not be linearly independent. But we can throw out the dependent vectors from $\left\{u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{l}\right\}$ and make a basis of $U+W$ out of it. Therefore basis of $U+W$ contains at most $k+l$ vectors. Consequently,

$$
\begin{equation*}
\operatorname{dim}(U+W) \leq k+l=\operatorname{dim}(U)+\operatorname{dim}(W) \quad * \backslash \tag{7}
\end{equation*}
$$

Using the above result we can conclude that

$$
\operatorname{dim}\left(U_{1}+U_{2}\right) \leq \operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)
$$

Now suppose the statement is true for $m-1$ subspaces i.e.,

$$
\begin{equation*}
\operatorname{dim}\left(U_{1}+\cdots+U_{m-1}\right) \leq \operatorname{dim}\left(U_{1}\right)+\cdots+\operatorname{dim}\left(U_{m-1}\right) \tag{8}
\end{equation*}
$$

We want to show that the statement is true for m subspaces. Using the result (7) and the above equation (8) we can conclude that

$$
\begin{aligned}
\operatorname{dim}(\underbrace{U_{1}+\cdots+U_{m-1}}_{U}+\underbrace{U_{m}}_{W}) & \leq \operatorname{dim}\left(U_{1}+\cdots+U_{m-1}\right)+\operatorname{dim}\left(U_{m}\right) \\
& \leq \operatorname{dim}\left(U_{1}\right)+\cdots+\operatorname{dim}\left(U_{m-1}\right)+\operatorname{dim}\left(U_{m}\right) \quad(\text { using (8) }) .
\end{aligned}
$$

Remark: The result in (7) can also be proved by using Theorem 5.4.6. Namely, we can say that

$$
\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W) \leq \operatorname{dim}(U)+\operatorname{dim}(W)
$$

However, the text marked inside $* \backslash \ldots * \backslash$ explains the main idea behind Theorem 5.4.6.

Problem 6.5: Let $\operatorname{dim}(V)=n$ and $\operatorname{dim}(n u l l(T))=m$. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of $\operatorname{null}(T)$. Since $\operatorname{null}(T)$ is a subspace of V, by the basis extension theorem we can extend this set $\left\{v_{1}, \ldots, v_{m}\right\}$ to a basis of V. Let $\left\{v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{n-m}\right\}$ be a basis of V.

Now define

$$
U=\operatorname{span}\left\{u_{1}, \ldots, u_{n-m}\right\}
$$

We will prove that

$$
U \cap \operatorname{null}(T)=\{0\} \text { and } \operatorname{range}(T)=\{T(u) \mid u \in U\} .
$$

"First of all, we know that $\left\{v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{n-m}\right\}$ is a set of independent vectors (because it is a basis of $V)$. Now if there is some vector $u \in U \cap \operatorname{null}(T)$, then u can be written as

$$
\begin{aligned}
u & =c_{1} u_{1}+\cdots+c_{n-m} u_{n-m} \\
\text { also } u & =d_{1} v_{1}+\cdots+d_{m} v_{m} .
\end{aligned}
$$

(Because $\left\{u_{1}, \ldots, u_{n-m}\right\}$ is a basis of U and $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis of $\left.\operatorname{null}(T)\right)$. Therefore we have

$$
\begin{array}{ll}
& c_{1} u_{1}+\cdots+c_{n-m} u_{n-m}=d_{1} v_{1}+\cdots+d_{m} v_{m} \\
\text { i.e., } & c_{1} u_{1}+\cdots+c_{n-m} u_{n-m}+\left(-d_{1}\right) v_{1}+\cdots+\left(-d_{m}\right) v_{m}=0 .
\end{array}
$$

But we know that $v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{n-m}$ are independent vectors. Therefore $c_{1}=0, \ldots, c_{n-m}=$ $0, d_{1}=0, \ldots, d_{m}=0$. Consequently, $u=0$. Therefore $U \cap \operatorname{null}(T)=\{0\}$."

Now we want to show that $\operatorname{range}(T)=\{T(u) \mid u \in U\}$. Since $U \subset V$, we have

$$
\begin{equation*}
\{T(u) \mid u \in U\} \subset\{T(v) \mid v \in V\}=\operatorname{range}(T) \tag{9}
\end{equation*}
$$

Conversely, let us choose $T(v) \in \operatorname{range}(T)$. We want to show that $T(v) \in\{T(u) \mid u \in U\}$. Since $\left\{v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{n-m}\right\}$ is a basis of V, we can write

$$
v=a_{1} v_{1}+\cdots+a_{m} v_{m}+b_{1} u_{1}+\cdots+b_{n-m} u_{n-m}
$$

Therefore

$$
\begin{aligned}
T(v) & =a_{1} T\left(v_{1}\right)+\cdots a_{m} T\left(v_{m}\right)+T\left(b_{1} u_{1}+\cdots+b_{n-m} u_{n-m}\right) \\
& =T\left(b_{1} u_{1}+\cdots+b_{n-m} u_{n-m}\right) \quad\left(\text { since } v_{i} \in \operatorname{null}(T), \forall i=1, \ldots, m\right) .
\end{aligned}
$$

But $b_{1} u_{1}+\cdots+b_{n-m} u_{n-m} \in U$, therefore $T(v)=T\left(b_{1} u_{1}+\cdots+b_{n-m} u_{n-m}\right) \in\{T(u) \mid u \in U\}$. Consequently,

$$
\begin{equation*}
\operatorname{range}(T) \subset\{T(u) \mid u \in U\} . \tag{10}
\end{equation*}
$$

Combining (9) and (10) we have the result

$$
\operatorname{range}(T)=\{T(u) \mid u \in U\}
$$

Remark: (1) Geometric idea: nullspace is annihilated by the linear transformation T. So the main contribution for range (T) is given by $V-\operatorname{null}(T)$. To realize this fact, look at the construction of U.
(2) First part of the proof (which is included in "...") uses the similar technique of problem 5.6. But this time the technique is used in a reverse order. Both rely on the same geometric idea.

Problem 6.7: First of all, notice that $S: U \rightarrow V$, therefore $\operatorname{null}(S)$ is a subspace of U. On the other hand $T \circ S: U \rightarrow W$, therefore $\operatorname{null}(T \circ S)$ is a also subspace of U. But which one is bigger? Let $u \in \operatorname{null}(S)$, then $T \circ S(u)=T(S(u))=T\left(0_{V}\right)=0_{W}$ (we are using the notation 0_{X} to indicate that it is the zero element of the vector space X). Which implies that $u \in \operatorname{null}(T \circ S)$, therefore $\operatorname{null}(S) \subset \operatorname{null}(T \circ S)$.

Now let us say $\operatorname{dim}(\operatorname{null}(S))=k$ and $\left\{s_{1}, \ldots, s_{k}\right\}$ be a basis of $\operatorname{null}(S)$. We can extend it to a basis of $\operatorname{null}(T \circ S)$, say $\left\{s_{1}, \ldots, s_{k}, u_{1}, \ldots, u_{l}\right\}$. Since each of $s_{1}, \ldots, s_{k}, u_{1}, \ldots, u_{l}$ is annihilated by $T \circ S$, either they are annihilated by S or their image (via S) is annihilated by T. We know that the vectors s_{1}, \ldots, s_{k} are annihilated by S (because they belong to $\operatorname{null}(S))$. Therefore images of u_{1}, \ldots, u_{l} via S i.e., $S\left(u_{1}\right), \ldots, S\left(u_{l}\right)$ must be annihilated by T (because $T \circ S\left(u_{i}\right)=0$). In other words

$$
\begin{equation*}
S\left(u_{1}\right), \ldots, S\left(u_{l}\right) \text { belong to the } \operatorname{null}(T) \tag{11}
\end{equation*}
$$

But $S\left(u_{1}\right), \ldots, S\left(u_{l}\right)$ are l independent vectors. Because if

$$
\begin{array}{ll}
& c 1 S\left(u_{1}\right)+\cdots+c_{l} S\left(u_{l}\right)=0 \tag{12}\\
\text { i.e., } & S\left(c_{1} u_{1}+\cdots+c_{l} u_{l}\right)=0 .
\end{array}
$$

Then $c_{1} u_{1}+\cdots+c_{l} u_{l} \in \operatorname{null}(S)$. But the $\operatorname{null}(S)$ is spanned by another disjoint independent set of vectors, namely s_{1}, \ldots, s_{k}. Therefore $c_{1} u_{1}+\cdots+c_{l} u_{l}=0$ (use the "..." technique from problem 6.5 or the technique of problem 5.6). But u_{1}, \ldots, u_{l} is a part of a basis (they are part of the basis of $\operatorname{null}(T \circ S)$), therefore u_{1}, \ldots, u_{l} are independent. Hence $c_{1}=0, \ldots, c_{l}=0$. Then from (12) we can say that $S\left(u_{1}\right), \ldots, S\left(u_{l}\right)$ are independent.

Now we can revise the statement (11) and say that $n u l l(T)$ contains l many independent vectors. Therefore $\operatorname{dim}(\operatorname{null}(T)) \geq l$. Recall that $\left\{s_{1}, \ldots, s_{k}, u_{1}, \ldots, u_{l}\right\}$ is a basis of $\operatorname{null}(T \circ$ $S)$. Therefore $\operatorname{dim}(\operatorname{null}(T \circ S))=k+l$. Gluing all the statements together we have

$$
\operatorname{dim}(\operatorname{null}(T \circ S))=k+l=\operatorname{dim}(\operatorname{null}(S))+l \leq \operatorname{dim}(\operatorname{null}(S))+\operatorname{dim}(\operatorname{null}(T)) .
$$

Alternative Proof (using the dimension formula)

First of all, notice that $S: U \rightarrow V$, therefore $\operatorname{null}(S)$ is a subspace of U. On the other hand $T \circ S: U \rightarrow W$, therefore $\operatorname{null}(T \circ S)$ is a also subspace of U. But which one is bigger? Let $u \in \operatorname{null}(S)$, then $T \circ S(u)=T(S(u))=T\left(0_{V}\right)=0_{W}$ (we are using the notation 0_{X} to indicate that it is the zero element of the vector space X). Which implies that $u \in \operatorname{null}(T \circ S)$, therefore $\operatorname{null}(S) \subset \operatorname{null}(T \circ S)$.

Now let us say $\operatorname{dim}(\operatorname{null}(S))=k$ and $\left\{s_{1}, \ldots, s_{k}\right\}$ be a basis of $\operatorname{null}(S)$. We can extend it to a basis of $\operatorname{null}(T \circ S)$, say $\left\{s_{1}, \ldots, s_{k}, u_{1}, \ldots, u_{l}\right\}$. Since each of $s_{1}, \ldots, s_{k}, u_{1}, \ldots, u_{l}$ is annihilated by $T \circ S$, either they are annihilated by S or their image (via S) is annihilated by T. We know that the vectors s_{1}, \ldots, s_{k} are annihilated by S (because they belong to $\operatorname{null}(S))$. Therefore images of u_{1}, \ldots, u_{l} via S i.e., $S\left(u_{1}\right), \ldots, S\left(u_{l}\right)$ must be annihilated by T (because $T \circ S\left(u_{i}\right)=0$). In other words

$$
\begin{equation*}
S\left(s_{i}\right)=0_{V} \forall i=1, \ldots, k \text { and } S\left(u_{1}\right), \ldots, S\left(u_{l}\right) \text { belong to the } \operatorname{null}(T) . \tag{13}
\end{equation*}
$$

We know that $S: U \rightarrow V$, and $\operatorname{null}(T \circ S) \subset U$. Let us restrict S to $\operatorname{null}(T \circ S)^{1}$, then from (13) we can say that range $\left(\left.S\right|_{\text {null }(T \circ S)}\right) \subset \operatorname{null}(T)$. Therefore

$$
\operatorname{dim}\left(\operatorname{range}\left(\left.S\right|_{\operatorname{null}(T \circ S)}\right)\right) \leq \operatorname{dim}(\operatorname{null}(T)) .
$$

Now applying the dimension formula on $\left.S\right|_{\text {null }(T \circ S)}$, and the above result we obtain

$$
\begin{aligned}
\operatorname{dim}(\operatorname{null}(T \circ S)) & =\operatorname{dim}\left(\operatorname{null}\left(\left.S\right|_{\operatorname{null}(T \circ S)}\right)\right)+\operatorname{dim}\left(\operatorname{range}\left(\left.S\right|_{\operatorname{null}(T \circ S)}\right)\right. \\
& =\operatorname{dim}(\operatorname{null}(S))+\operatorname{dim}\left(\operatorname{range}\left(\left.S\right|_{\operatorname{null}(T \circ S)}\right)\right. \\
& \leq \operatorname{dim}(\operatorname{null}(S))+\operatorname{dim}(\operatorname{null}(T))
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Let $f: X \rightarrow Y$ be a function and $Z \subset X$. Restriction of f on Z is denoted by $\left.f\right|_{Z}$. The domain of restricted $\left.f\right|_{Z}$ is only Z (whereas originally f had a bigger domain, namely X).

