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Problem 4.2: Let us take two arbitrary vectors vy, vo € WiNWs5 and two scalars a,b € F.
We need to show that av; + bvy € Wi N Wh.

Since vy, v9 € Wi N Wy, we have v; € Wi, 01 € Wa,v9 € Wi, v9 € Wi, Now since W is a
vector space and vy, vy € W7 we must have av, + buy € W;. For the similar reason, we also
have av; + bvy € Ws. Consequently, av; + bvy € W1 N Wh.

Problem 4.4: The claim is false.
Consider the vector space R? over the field R. Now define

Wy = span{(1,0)} = {a(1,0) : a € R} (1)
Wy = span{(0,1)} ={b(0,1) : b € R} (2)
W3 = span{(1,1)} ={c(1,1) : c € R}. (3)

Since (1,0) and (1,1) are two independent vectors in R?, span{(1,0),(1,1)} = R But
span{(1,0), (1,1)} = {c1(1,0) + c2(0,1) : ¢1,co € R} = Wy + W3. Therefore R? = W, + W,
Also we can see that W, N W5 = {(0,0)}

[Take (x1,25) € Wi N W3. Then (x1,22) € W1 as well as (x1,x9) € W3. Therefore there
exists a,c € R such that (z1, x2) = a(1,0) and (z1,x2) = c¢(1,1). Which implies that a(1,0) =
c(1,1) i.e, a = 0,¢ = 0. Therefore (x1,x2) = (0,0). So any vector (x1,z5) € Wi N Ws is
equal to (0,0). Therefore W, N W3 = {(0,0)}/.

So using the the proposition 4.4.7 we can say that R? = W, @ Ws.

Similarly, R? = Wy @ W5. Therefore W; @ Wy = R? = W, @ W3. But obviously from
definitions , we can see that Wy #£ Wi,

Problem 5.1: Let us define

wp = Uy — V2
Wy = Vg — Us
Wp—-1 = Up—1 — Un
W, = Up.
We want to show that span{w;,ws,...,w,} = span{vy,ve,...,v,} = V. Since each w; is
a linear combination of the vectors vy, vy, ..., v,, we have w; € span{vy,vs, ..., v,} for all

1=1,2,...,n. Therefore by Lemma 5.1.2 we have

span{wy, wy, ..., w,} C span{vy, vy, ..., v, }.



Now we want to show that span{vy, va, ..., v,} C span{wy,ws, ..., w,}. Let us take a vec-
tor v € span{vy,vs,...,v,}. Then v can be written as a linear combination of vy, vs, ..., v,
i.e., there exist scalars ¢, co, ..., ¢, € F such that

V= C1U1 + CoUs + -+ - + CLU,.

Our goal is to write v as a linear combination of wy, ws, ..., w,. So first let us write each v;
as a linear combination of wq, ws, ..., w,. We notice that
Up = Wy
Up—1 = Wp—1+ Wy,
Vg = W+ W3+ -+ w,
Vv = Wyt W+t Wy

Therefore we have

V= CU1 + CUy + - CpUp
= Cl(wl—|—w2—|—-..—|-wn)+02(w2+w3+...+wn)+...+ann
= cw+ (1 +e)wr+ (a1 +ca+c3)ws+ -+ (c1 + o+ -+ + ¢p)wp.

The last line is a linear combination of wy, ws, ..., w,. Therefore v € span{wy,ws, ..., w,},
and hence span{vy, v, ..., w,} C span{wy,wy, ..., w,}.

Problem 5.3: [This problem relies on the same idea as problem 4.4] Let {vy,vs,...,v,}
be a basis of V. Define the spaces

Uy = span{v}
Uy = span{vs}

U, = span{v,}.

Since each v; € V., each U; is a subspace of V. Now since {vi,vs,...,v,} is a basis
of V, each v € V can be written as a wunique linear combination of vy, vs,...,v, i.e.,
v = U1 + Uy + -+ + cuu,. But ¢u; € U; for each ¢ = 1,2,...,n. Therefore V =
Ube4+Us @+ -+ BU,.

Problem 5.4: Since it is given that U is a subspace of V', we know that U C V. So if
we want to show that U = V| we need to show that V C U.

Now let dim(V') = n, then we have dim(U) = n (since it is given that dim(U) = dim(V)).
Now let {uy,us,...,u,} be a basis of U. Then {uy,us,...,u,} is a set of independent of
vectors in U. But it is given that U C V. Therefore {uj,us,...,u,} is also a set of



n independent vectors in V. But dim(V) = n, therefore {uj,us,...,u,} is also a ba-
sis of V' (see Theorem 5.4.4). Which implies that any vector v € V can be written as
v = ciuy + caug + - - - + cpu, uniquely for some scalars ¢; € F. But {ug, us, ..., u,} is also a
basis of U, therefore v = cyu; + coug + -+ - + c,u, € U. Consequently, V C U.

Problem 5.6: Let {uy, us, us, ug, us} and {vy, v9, v3,v4,v5} be bases of U and V' respec-
tively. Now suppose if possible U NV = {0}. We will find a contradiction. Consider the
following equation

Clul+"'+C5U5+d1’01+"'+d51}5:O. (4)
The above equation can be written as
crug + oo+ esus = (—dy)vr + -+ (—ds)vs. (5)

From the above equation we notice that the vector ciu; + - - - + csus is a linear combination
of the vectors vy, ..., vs, therefore ciuy +- - -+ csus € V. But naturally ciuy +---+csus € U.
Therefore ciu; + -+ + csus € UNV. But we assumed that U NV = {0}. Therefore

ClUy + -+ + csus = 0. (6)

Since {uy, us, us, uy, us} is a basis of U, uy, ..., us are linearly independent. Therefore @ is
true only of ¢; =0,...,¢; = 0. Then gives us

(—dl)vl + -+ (—d5)U5 = O,

which is true only if d; = 0,...,ds = 0 (since {vy,...,v5} is a basis i.e., they are indepen-
dent). So finally we have ¢; = 0,...,¢5 = 0,d; =0,...,d;s = 0. Therefore from we can
say that uy,...,us,vy,...,vs are linearly independent. But it is a contradiction, because all

of them belong to R? and we can not have ten linearly independent vectors in R?. Therefore
we must have U NV # {0}.

Alternative Proof

Since both U and V are subspaces of R?, U + V is also a subspace of R?. Now using the
Theorem 5.4.6 we have

dim(U+V) = dim(U)+ dim(V) —dim(UNV)
— 545—dim(UNV)
i.e., dim(UNV) = 10—dim(U +V).

Since U+V is a subspace of R?, dim(U+V) < 9. Therefore dim(UNV) = 10—dim(U+V) >
10 — 9 = 1. Since dim(U NV) > 1, we must have U NV # {0}.



Remark: The geometric idea: Let U be an m dimensional subspace of an n dimensional
vector space W. Now if we want to roam inside W but don’t want to hit U then we have
only n — m degrees of freedom. In the above problem W = R? and U is a five dimensional
subspace. Now if we want to roam inside V' which avoids U (means VNU = {0}) then V' can
be at most 9 — 5 = 4 dimensional subspace. If V' is five dimensional then it must intersect

U.

Problem 5.7: [This problem uses the same idea as problem 5.6] We will prove it by
induction. *\ Let U and W be two subspaces of V. We will show that dim(U + W) <
dim(U)+dim(W). Let dim(U) = k, dim(W) =l and {uy,...,ux}, {wi,...,w;} be bases of
U and W respectively. Then any vector u € U is a linear combination of uy, ..., u; and any
vector w € W is a linear combination of wy, ..., w;. Therefore any vector u+w € U+ W is a
linear combination of uy, ..., ug, wy, ..., w;. Therefore span{uy, ..., ug, wy,...,w} =U+W.

Now uy, ..., ug, wy, ..., w; may not be linearly independent. But we can throw out the de-
pendent vectors from {uy, ..., ug, wq,...,w;} and make a basis of U+ W out of it. Therefore
basis of U + W contains at most k + [ vectors. Consequently,

dim(U+W) <k+1=dimU)+dim(W) x\ (7)
Using the above result we can conclude that
dim(Uy + Usy) < dim(Uy) + dim(Uy).
Now suppose the statement is true for m — 1 subspaces i.e.,
dim(Uy + -+ + Up1) < dim(Uy) + - - - + dim(U,,_1). (8)

We want to show that the statement is true for m subspaces. Using the result and the
above equation we can conclude that

dim(Uy + -+ - + Un-1+ Un ) < dim(Uy+ -+ Up_1) + dim(Uy,)
U W

< dim(Uy) + - - + dim(Up,—1) + dim(U,,)  (using ().

Remark: The result in @ can also be proved by using Theorem 5.4.6. Namely, we can say
that

dim(U + W) = dim(U) + dim(W) — dim(U N W) < dim(U) + dim(W).

However, the text marked inside #\ ... * \ explains the main idea behind Theorem 5.4.6.

Problem 6.5: Let dim(V) = n and dim(null(T)) = m. Let {v,...,v,} be a basis of
null(T'). Since null(T) is a subspace of V', by the basis extension theorem we can extend
this set {v1,...,v,} to a basis of V. Let {vy,..., v, u1,...,Uyp_m} be a basis of V.



Now define
U = span{uy, ..., Up_m}.
We will prove that
Unnull(T) = {0} and range(T) = {T(u)|u € U}.

“First of all, we know that {vy, ..., U, U1, ..., Uy} is a set of independent vectors (because
it is a basis of V). Now if there is some vector v € U Nnull(T), then u can be written as

U = U+ F ChomUn—m
also u = dyvi + -+ dpom.
(Because {u1,...,u,—m} is a basis of U and {vy,...,v,} is a basis of null(T)). Therefore

we have
Cluy + -+ CpemUp—m = d1111 4+ 4 dmvm
i, curt -+ Cromln g + (—dy)vr + - 4 (—dp) v = 0.

But we know that vy, ..., vy, u1, ..., u,_, are independent vectors. Thereforec; =0,...,¢pm =
0,dy =0,...,d, =0. Consequently, u = 0. Therefore U N null(T) = {0}.”
Now we want to show that range(T) = {T(u)|u € U}. Since U C V, we have

{T(w)|lue U} C{T(v)lve V}=range(T). (9)
Conversely, let us choose T'(v) € range(T). We want to show that T'(v) € {T(u)|lu € U}.
Since {vy, ..., Vm, U1, .., Uy_m} 1S a basis of V', we can write

U =101+ AU bt e by U
Therefore
Tw) = aiT(vy) 4+ anT(vm) +T(brus + -+ + by mln_m)
= T + -+ bpmlpn-m) (since v; € null(T), Yi=1,...,m).

But byus + - -+ by mn_m € U, therefore T(v) = T(byus +- -+ by_mntin_m) € {T(u)|lu € U}.
Consequently,

range(T) C {T(u)|u € U}. (10)
Combining @D and we have the result
range(T) = {T(u)lu € U}.

Remark: (1) Geometric idea: nullspace is annihilated by the linear transformation 7". So
the main contribution for range(T") is given by V' — null(T"). To realize this fact, look at the
construction of U.

(2) First part of the proof (which is included in “...”) uses the similar technique of problem
5.6. But this time the technique is used in a reverse order. Both rely on the same geometric
idea.




Problem 6.7: First of all, notice that S : U — V', therefore null(S) is a subspace of U.
On the other hand T o S : U — W, therefore null(T o S) is a also subspace of U. But which
one is bigger? Let u € null(S), then T o S(u) = T(S(u)) = T(0y) = Oy (we are using the
notation Ox to indicate that it is the zero element of the vector space X). Which implies
that u € null(T o S), therefore null(S) C null(T o S).

Now let us say dim(null(S)) = k and {si,...,sr} be a basis of null(S). We can extend
it to a basis of null(T o S), say {s1,..., Sk, u1,...,u}. Since each of s1,..., Sk, uy,...,u; is
annihilated by T o S, either they are annihilated by S or their image (via S) is annihilated
by T. We know that the vectors sy, ..., s, are annihilated by S (because they belong to
null(S)). Therefore images of uy,...,u; via S i.e., S(u1),...,S(w;) must be annihilated by
T (because T o S(u;) = 0). In other words

S(uy),...,S(u;) belong to the null(T). (11)
But S(uy),...,S(u;) are | independent vectors. Because if
clS(uy) +---+aS(u) =0 (12)

i.e., S(cug+---+cqu) =0.

Then cyuy +- - -+ cuy € null(S). But the null(S) is spanned by another disjoint independent
set of vectors, namely sy, ..., s;. Therefore ciu;+---+cu; = 0 (use the “...” technique from
problem 6.5 or the technique of problem 5.6). But uy, ..., u; is a part of a basis (they are part
of the basis of null(T o S)), therefore uy, ..., u; are independent. Hence ¢; = 0,...,¢, = 0.
Then from we can say that S(uq),...,S(u;) are independent.

Now we can revise the statement and say that null(T') contains [ many independent
vectors. Therefore dim(null(T)) > I. Recall that {sy,..., sk, u1,...,u} is a basis of null(T o
S). Therefore dim(null(T o S)) = k + [. Gluing all the statements together we have

dim(null(T o S)) =k + 1 = dim(null(S)) + | < dim(null(S)) + dim(null(T)).

Alternative Proof (using the dimension formula)

First of all, notice that S : U — V, therefore null(S) is a subspace of U. On the other
hand T o S : U — W, therefore null(T o S) is a also subspace of U. But which one is
bigger? Let u € null(S), then T o S(u) = T(S(u)) = T(0y) = Ow (we are using the
notation Ox to indicate that it is the zero element of the vector space X). Which implies
that u € null(T o S), therefore null(S) C null(T o S).

Now let us say dim(null(S)) = k and {s1,...,sr} be a basis of null(S). We can extend
it to a basis of null(T o S), say {s1,...,Sk, u1,...,u}. Since each of s1,..., S, uy,...,u is
annihilated by T o S, either they are annihilated by S or their image (via S) is annihilated
by T. We know that the vectors si,...,s; are annihilated by S (because they belong to
null(S)). Therefore images of uy,...,u; via S i.e., S(u1),...,S(u;) must be annihilated by
T (because T o S(u;) = 0). In other words

S(s;)) =0y Vi=1,...,kand S(uy),...,S(u;) belong to the null(T). (13)
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We know that S : U — V, and null(T o S) C U. Let us restrict S to null(T o SY] then
from (13) we can say that range(S|nuiros)) C null(T). Therefore

dim (range(S|nu(ros))) < dim(null(T)).
Now applying the dimension formula on S \mu(To s), and the above result we obtain

dim(null(T' o S)) = dim (null(5|nuu(Tos))) + dim (mnge(S]m”(Tos))
= dim(null(S)) + dim (range(S|nuyros))
< dim(null(S)) + dim(null(T)).

Let f: X — Y be a function and Z C X. Restriction of f on Z is denoted by f|z. The domain of restricted f|z is only Z
(whereas originally f had a bigger domain, namely X).



