
MAT 67 Homework 2
August 18, 2014 Indrajit Jana

Problem 4.2: Let us take two arbitrary vectors v1, v2 ∈ W1∩W2 and two scalars a, b ∈ F.
We need to show that av1 + bv2 ∈ W1 ∩W2.

Since v1, v2 ∈ W1 ∩W2, we have v1 ∈ W1, v1 ∈ W2, v2 ∈ W1, v2 ∈ W2. Now since W1 is a
vector space and v1, v2 ∈ W1 we must have av1 + bv2 ∈ W1. For the similar reason, we also
have av1 + bv2 ∈ W2. Consequently, av1 + bv2 ∈ W1 ∩W2.

Problem 4.4: The claim is false.
Consider the vector space R2 over the field R. Now define

W1 := span{(1, 0)} = {a(1, 0) : a ∈ R} (1)

W2 := span{(0, 1)} = {b(0, 1) : b ∈ R} (2)

W3 := span{(1, 1)} = {c(1, 1) : c ∈ R}. (3)

Since (1, 0) and (1, 1) are two independent vectors in R2, span{(1, 0), (1, 1)} = R2. But
span{(1, 0), (1, 1)} = {c1(1, 0) + c2(0, 1) : c1, c2 ∈ R} = W1 + W3. Therefore R2 = W1 + W3.
Also we can see that W1 ∩W3 = {(0, 0)}

[Take (x1, x2) ∈ W1 ∩W3. Then (x1, x2) ∈ W1 as well as (x1, x2) ∈ W3. Therefore there
exists a, c ∈ R such that (x1, x2) = a(1, 0) and (x1, x2) = c(1, 1). Which implies that a(1, 0) =
c(1, 1) i.e, a = 0, c = 0. Therefore (x1, x2) = (0, 0). So any vector (x1, x2) ∈ W1 ∩W3 is
equal to (0, 0). Therefore W1 ∩W3 = {(0, 0)}].

So using the the proposition 4.4.7 we can say that R2 = W1 ⊕W3.
Similarly, R2 = W2 ⊕W3. Therefore W1 ⊕W3 = R2 = W2 ⊕W3. But obviously from

definitions (1), (3) we can see that W1 6= W3.

Problem 5.1: Let us define

w1 := v1 − v2

w2 := v2 − v3
...

wn−1 := vn−1 − vn

wn := vn.

We want to show that span{w1, w2, . . . , wn} = span{v1, v2, . . . , vn} = V . Since each wi is
a linear combination of the vectors v1, v2, . . . , vn, we have wi ∈ span{v1, v2, . . . , vn} for all
i = 1, 2, . . . , n. Therefore by Lemma 5.1.2 we have

span{w1, w2, . . . , wn} ⊂ span{v1, v2, . . . , vn}.
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Now we want to show that span{v1, v2, . . . , vn} ⊂ span{w1, w2, . . . , wn}. Let us take a vec-
tor v ∈ span{v1, v2, . . . , vn}. Then v can be written as a linear combination of v1, v2, . . . , vn
i.e., there exist scalars c1, c2, . . . , cn ∈ F such that

v = c1v1 + c2v2 + · · ·+ cnvn.

Our goal is to write v as a linear combination of w1, w2, . . . , wn. So first let us write each vi
as a linear combination of w1, w2, . . . , wn. We notice that

vn = wn

vn−1 = wn−1 + wn

...

v2 = w2 + w3 + · · ·+ wn

v1 = w1 + w2 + · · ·+ wn.

Therefore we have

v = c1v1 + c2v2 + · · ·+ cnvn

= c1(w1 + w2 + · · ·+ wn) + c2(w2 + w3 + · · ·+ wn) + · · ·+ cnwn

= c1w1 + (c1 + c2)w2 + (c1 + c2 + c3)w3 + · · ·+ (c1 + c2 + · · ·+ cn)wn.

The last line is a linear combination of w1, w2, . . . , wn. Therefore v ∈ span{w1, w2, . . . , wn},
and hence span{v1, v2, . . . , wn} ⊂ span{w1, w2, . . . , wn}.

Problem 5.3: [This problem relies on the same idea as problem 4.4] Let {v1, v2, . . . , vn}
be a basis of V . Define the spaces

U1 = span{v1}
U2 = span{v2}

...

Un = span{vn}.

Since each vi ∈ V , each Ui is a subspace of V . Now since {v1, v2, . . . , vn} is a basis
of V , each v ∈ V can be written as a unique linear combination of v1, v2, . . . , vn i.e.,
v = c1v1 + c2v2 + · · · + cnvn. But civi ∈ Ui for each i = 1, 2, . . . , n. Therefore V =
U1 ⊕+U2 ⊕+ · · ·+⊕Un.

Problem 5.4: Since it is given that U is a subspace of V , we know that U ⊂ V . So if
we want to show that U = V , we need to show that V ⊂ U .

Now let dim(V ) = n, then we have dim(U) = n (since it is given that dim(U) = dim(V )).
Now let {u1, u2, . . . , un} be a basis of U . Then {u1, u2, . . . , un} is a set of independent of
vectors in U . But it is given that U ⊂ V . Therefore {u1, u2, . . . , un} is also a set of
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n independent vectors in V . But dim(V ) = n, therefore {u1, u2, . . . , un} is also a ba-
sis of V (see Theorem 5.4.4). Which implies that any vector v ∈ V can be written as
v = c1u1 + c2u2 + · · ·+ cnun uniquely for some scalars ci ∈ F. But {u1, u2, . . . , un} is also a
basis of U , therefore v = c1u1 + c2u2 + · · ·+ cnun ∈ U . Consequently, V ⊂ U .

Problem 5.6: Let {u1, u2, u3, u4, u5} and {v1, v2, v3, v4, v5} be bases of U and V respec-
tively. Now suppose if possible U ∩ V = {0}. We will find a contradiction. Consider the
following equation

c1u1 + · · ·+ c5u5 + d1v1 + · · ·+ d5v5 = 0. (4)

The above equation can be written as

c1u1 + · · ·+ c5u5 = (−d1)v1 + · · ·+ (−d5)v5. (5)

From the above equation we notice that the vector c1u1 + · · ·+ c5u5 is a linear combination
of the vectors v1, . . . , v5, therefore c1u1 + · · ·+ c5u5 ∈ V . But naturally c1u1 + · · ·+ c5u5 ∈ U .
Therefore c1u1 + · · ·+ c5u5 ∈ U ∩ V . But we assumed that U ∩ V = {0}. Therefore

c1u1 + · · ·+ c5u5 = 0. (6)

Since {u1, u2, u3, u4, u5} is a basis of U , u1, . . . , u5 are linearly independent. Therefore (6) is
true only of c1 = 0, . . . , c5 = 0. Then (5) gives us

(−d1)v1 + · · ·+ (−d5)v5 = 0,

which is true only if d1 = 0, . . . , d5 = 0 (since {v1, . . . , v5} is a basis i.e., they are indepen-
dent). So finally we have c1 = 0, . . . , c5 = 0, d1 = 0, . . . , d5 = 0. Therefore from (4) we can
say that u1, . . . , u5, v1, . . . , v5 are linearly independent. But it is a contradiction, because all
of them belong to R9 and we can not have ten linearly independent vectors in R9. Therefore
we must have U ∩ V 6= {0}.

Alternative Proof

Since both U and V are subspaces of R9, U + V is also a subspace of R9. Now using the
Theorem 5.4.6 we have

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V )

= 5 + 5− dim(U ∩ V )

i.e., dim(U ∩ V ) = 10− dim(U + V ).

Since U+V is a subspace of R9, dim(U+V ) ≤ 9. Therefore dim(U∩V ) = 10−dim(U+V ) ≥
10− 9 = 1. Since dim(U ∩ V ) ≥ 1, we must have U ∩ V 6= {0}.
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Remark: The geometric idea: Let U be an m dimensional subspace of an n dimensional
vector space W . Now if we want to roam inside W but don’t want to hit U then we have
only n −m degrees of freedom. In the above problem W = R9 and U is a five dimensional
subspace. Now if we want to roam inside V which avoids U (means V ∩U = {0}) then V can
be at most 9 − 5 = 4 dimensional subspace. If V is five dimensional then it must intersect
U .

Problem 5.7: [This problem uses the same idea as problem 5.6] We will prove it by
induction. ∗\ Let U and W be two subspaces of V . We will show that dim(U + W ) ≤
dim(U) +dim(W ). Let dim(U) = k, dim(W ) = l and {u1, . . . , uk}, {w1, . . . , wl} be bases of
U and W respectively. Then any vector u ∈ U is a linear combination of u1, . . . , uk and any
vector w ∈ W is a linear combination of w1, . . . , wl. Therefore any vector u+w ∈ U +W is a
linear combination of u1, . . . , uk, w1, . . . , wl. Therefore span{u1, . . . , uk, w1, . . . , wl} = U+W .

Now u1, . . . , uk, w1, . . . , wl may not be linearly independent. But we can throw out the de-
pendent vectors from {u1, . . . , uk, w1, . . . , wl} and make a basis of U +W out of it. Therefore
basis of U + W contains at most k + l vectors. Consequently,

dim(U + W ) ≤ k + l = dim(U) + dim(W ) ∗ \ (7)

Using the above result we can conclude that

dim(U1 + U2) ≤ dim(U1) + dim(U2).

Now suppose the statement is true for m− 1 subspaces i.e.,

dim(U1 + · · ·+ Um−1) ≤ dim(U1) + · · ·+ dim(Um−1). (8)

We want to show that the statement is true for m subspaces. Using the result (7) and the
above equation (8) we can conclude that

dim(U1 + · · ·+ Um−1︸ ︷︷ ︸
U

+ Um︸︷︷︸
W

) ≤ dim(U1 + · · ·+ Um−1) + dim(Um)

≤ dim(U1) + · · ·+ dim(Um−1) + dim(Um) (using (8)).

Remark: The result in (7) can also be proved by using Theorem 5.4.6. Namely, we can say
that

dim(U + W ) = dim(U) + dim(W )− dim(U ∩W ) ≤ dim(U) + dim(W ).

However, the text marked inside ∗\ . . . ∗ \ explains the main idea behind Theorem 5.4.6.

Problem 6.5: Let dim(V ) = n and dim(null(T )) = m. Let {v1, . . . , vm} be a basis of
null(T ). Since null(T ) is a subspace of V , by the basis extension theorem we can extend
this set {v1, . . . , vm} to a basis of V . Let {v1, . . . , vm, u1, . . . , un−m} be a basis of V .
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Now define

U = span{u1, . . . , un−m}.
We will prove that

U ∩ null(T ) = {0} and range(T ) = {T (u)|u ∈ U}.
“First of all, we know that {v1, . . . , vm, u1, . . . , un−m} is a set of independent vectors (because
it is a basis of V ). Now if there is some vector u ∈ U ∩ null(T ), then u can be written as

u = c1u1 + · · ·+ cn−mun−m

also u = d1v1 + · · ·+ dmvm.

(Because {u1, . . . , un−m} is a basis of U and {v1, . . . , vm} is a basis of null(T )). Therefore
we have

c1u1 + · · ·+ cn−mun−m = d1v1 + · · ·+ dmvm

i.e., c1u1 + · · ·+ cn−mun−m + (−d1)v1 + · · ·+ (−dm)vm = 0.

But we know that v1, . . . , vm, u1, . . . , un−m are independent vectors. Therefore c1 = 0, . . . , cn−m =
0, d1 = 0, . . . , dm = 0. Consequently, u = 0. Therefore U ∩ null(T ) = {0}.”

Now we want to show that range(T ) = {T (u)|u ∈ U}. Since U ⊂ V , we have

{T (u)|u ∈ U} ⊂ {T (v)|v ∈ V } = range(T ). (9)

Conversely, let us choose T (v) ∈ range(T ). We want to show that T (v) ∈ {T (u)|u ∈ U}.
Since {v1, . . . , vm, u1, . . . , un−m} is a basis of V , we can write

v = a1v1 + · · ·+ amvm + b1u1 + · · ·+ bn−mun−m.

Therefore

T (v) = a1T (v1) + · · · amT (vm) + T (b1u1 + · · ·+ bn−mun−m)

= T (b1u1 + · · ·+ bn−mun−m) (since vi ∈ null(T ), ∀i = 1, . . . ,m).

But b1u1 + · · ·+ bn−mun−m ∈ U , therefore T (v) = T (b1u1 + · · ·+ bn−mun−m) ∈ {T (u)|u ∈ U}.
Consequently,

range(T ) ⊂ {T (u)|u ∈ U}. (10)

Combining (9) and (10) we have the result

range(T ) = {T (u)|u ∈ U}.

Remark: (1) Geometric idea: nullspace is annihilated by the linear transformation T . So
the main contribution for range(T ) is given by V − null(T ). To realize this fact, look at the
construction of U .
(2) First part of the proof (which is included in “ . . . ”) uses the similar technique of problem
5.6. But this time the technique is used in a reverse order. Both rely on the same geometric
idea.
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Problem 6.7: First of all, notice that S : U → V , therefore null(S) is a subspace of U .
On the other hand T ◦S : U → W , therefore null(T ◦S) is a also subspace of U . But which
one is bigger? Let u ∈ null(S), then T ◦ S(u) = T (S(u)) = T (0V ) = 0W (we are using the
notation 0X to indicate that it is the zero element of the vector space X). Which implies
that u ∈ null(T ◦ S), therefore null(S) ⊂ null(T ◦ S).

Now let us say dim(null(S)) = k and {s1, . . . , sk} be a basis of null(S). We can extend
it to a basis of null(T ◦ S), say {s1, . . . , sk, u1, . . . , ul}. Since each of s1, . . . , sk, u1, . . . , ul is
annihilated by T ◦ S, either they are annihilated by S or their image (via S) is annihilated
by T . We know that the vectors s1, . . . , sk are annihilated by S (because they belong to
null(S)). Therefore images of u1, . . . , ul via S i.e., S(u1), . . . , S(ul) must be annihilated by
T (because T ◦ S(ui) = 0). In other words

S(u1), . . . , S(ul) belong to the null(T ). (11)

But S(u1), . . . , S(ul) are l independent vectors. Because if

c1S(u1) + · · ·+ clS(ul) = 0 (12)

i.e., S(c1u1 + · · ·+ clul) = 0.

Then c1u1+ · · ·+clul ∈ null(S). But the null(S) is spanned by another disjoint independent
set of vectors, namely s1, . . . , sk. Therefore c1u1+· · ·+clul = 0 (use the “ . . . ” technique from
problem 6.5 or the technique of problem 5.6). But u1, . . . , ul is a part of a basis (they are part
of the basis of null(T ◦ S)), therefore u1, . . . , ul are independent. Hence c1 = 0, . . . , cl = 0.
Then from (12) we can say that S(u1), . . . , S(ul) are independent.

Now we can revise the statement (11) and say that null(T ) contains l many independent
vectors. Therefore dim(null(T )) ≥ l. Recall that {s1, . . . , sk, u1, . . . , ul} is a basis of null(T ◦
S). Therefore dim(null(T ◦ S)) = k + l. Gluing all the statements together we have

dim(null(T ◦ S)) = k + l = dim(null(S)) + l ≤ dim(null(S)) + dim(null(T )).

Alternative Proof (using the dimension formula)

First of all, notice that S : U → V , therefore null(S) is a subspace of U . On the other
hand T ◦ S : U → W , therefore null(T ◦ S) is a also subspace of U . But which one is
bigger? Let u ∈ null(S), then T ◦ S(u) = T (S(u)) = T (0V ) = 0W (we are using the
notation 0X to indicate that it is the zero element of the vector space X). Which implies
that u ∈ null(T ◦ S), therefore null(S) ⊂ null(T ◦ S).

Now let us say dim(null(S)) = k and {s1, . . . , sk} be a basis of null(S). We can extend
it to a basis of null(T ◦ S), say {s1, . . . , sk, u1, . . . , ul}. Since each of s1, . . . , sk, u1, . . . , ul is
annihilated by T ◦ S, either they are annihilated by S or their image (via S) is annihilated
by T . We know that the vectors s1, . . . , sk are annihilated by S (because they belong to
null(S)). Therefore images of u1, . . . , ul via S i.e., S(u1), . . . , S(ul) must be annihilated by
T (because T ◦ S(ui) = 0). In other words

S(si) = 0V ∀i = 1, . . . , k and S(u1), . . . , S(ul) belong to the null(T ). (13)
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We know that S : U → V , and null(T ◦ S) ⊂ U . Let us restrict S to null(T ◦ S)1, then
from (13) we can say that range(S|null(T◦S)) ⊂ null(T ). Therefore

dim
(
range(S|null(T◦S))

)
≤ dim(null(T )).

Now applying the dimension formula on S|null(T◦S), and the above result we obtain

dim(null(T ◦ S)) = dim
(
null(S|null(T◦S))

)
+ dim

(
range(S|null(T◦S)

)
= dim(null(S)) + dim

(
range(S|null(T◦S)

)
≤ dim(null(S)) + dim(null(T )).

1Let f : X → Y be a function and Z ⊂ X. Restriction of f on Z is denoted by f |Z . The domain of restricted f |Z is only Z
(whereas originally f had a bigger domain, namely X).
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