
MAT 67 Homework 1
August 11, 2014 Indrajit Jana

Problem 1.1 The given system of equations

ax1 + bx2 = 0

cx1 + dx2 = 0.

Multiplying the first equation by c and second equation by a we have

acx1 + bcx2 = 0

acx1 + adx2 = 0.

Now subtracting the first equation from the second equation we have (ad− bc)x2 = 0. Now
if ad− bc 6= 0 then we must have x2 = 0. Substituting x2 = 0 in the given equations we have

ax1 = 0

cx1 = 0.

Multiplying the first equation by d, second by b and subtracting the second equation from
the first one we have (ad − bc)x1 = 0. But ad − bc 6= 0, therefore x1 = 0. Consequently,
x1 = 0, x2 = 0 is the only solution of the given system of equations.

Remark: Converse of the above statement is also true.

Conversely, suppose x1 = 0 = x2 is the only solution. We want to show that ad − bc 6= 0.
Suppose if possible ad− bc = 0, then we have two cases.
Case 1: ad− bc = 0 and all of a, b, c, d = 0. Then it is easy to see that x1 = 1 = x2 is also a
solution of the system. Which contradicts the fact that ‘x1 = 0 = x2 is the only solution’.
Case 2: ad − bc = 0 and at least one of a, b, c, d 6= 0. Without loss of generality we can
assume that a 6= 0. Then we can verify that x1 = −b, x2 = a is also a solution. Which again
contradicts the fact that ‘x1 = 0 = x2 is the only solution’.
Therefore we can conclude that if x1 = 0 = x2 is the only solution then we must have
ad− bc = 0.

Problem 2.1 Let us write z = x+ iy, w = u+ iv, where x, y, u, v ∈ R.

(a) Then az = ax+ iay. Since a ∈ R, clearly we have Re(az) = ax = aRe(z) and Im(az) =
ay = aIm(z).

(b) z+w = x+ iy+u+ iv = (x+u)+ i(y+v). Therefore Re(z+w) = x+u = Re(z)+Re(w)
and Im(z + w) = y + v = Im(z) + Im(w).
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Remark: If a /∈ R then Problem 2.1(a) may not be true. For example take z = 2 + 3i and
a = 1+2i. Then az = −4+7i. Therefore Re(az) = −4, whereas aRe(z) = (1+2i)2 = 2+4i.
Clearly Re(az) 6= aRe(z).

Problem 2.3 Let us write z = x + iy, w = u + iv, where x, y, u, v ∈ R. Then z + w =
(x+ u) + i(y + v) and z − w = (x− u) + i(y − v). Now we notice that

|z|2 = x2 + y2

|w|2 = u2 + v2

|z − w|2 = (x− u)2 + (y − v)2

|z + w|2 = (x+ u)2 + (y + v)2.

Therefore

|z − w|2 + |z + w|2 = (x− u)2 + (y − v)2 + (x+ u)2 + (y + v)2

= [(x− u)2 + (x+ u)2] + [(y − u)2 + (y + v)2]

= 2(x2 + u2) + 2(y2 + v2)

= 2(x2 + y2 + u2 + v2)

= 2(|z|2 + |w|2).

Alternative Solution

We know that if u is a complex number, then |u|2 = uū. Using that property we have

|z − w|2 + |z + w|2 = (z − w)(z − w) + (z + w)(z + w)

= (z − w)(z̄ − w̄) + (z + w)(z̄ + w̄)

= (zz̄ − zw̄ − z̄w + ww̄) + (zz̄ + zw̄ + z̄w + ww̄)

= 2(zz̄ + ww̄)

= 2(|z|2 + |w|2).

Problem 2.4 We know that either |z| = 1 or |w| = 1. Let us assume |z| = 1. Then we
can write z = eiθ and w = reiφ, where r, θ, φ ∈ R (and r is not necessarily 1). Now we can
compute ∣∣∣∣ z − w1− z̄w

∣∣∣∣ =

∣∣∣∣ eiθ − reiφ

1− e−iθreiφ

∣∣∣∣
=

∣∣∣∣∣eiθ
(
1− rei(φ−θ)

)
1− rei(φ−θ)

∣∣∣∣∣
= |eiθ| (since z̄w = rei(φ−θ) 6= 1)

= 1.
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case 2: Assume |w| = 1. Computation is similar as above.

Alternative Solution

Let us write

a =
z − w
1− z̄w

.

Then

ā =
z − w
1− z̄w

=
z̄ − w̄
1− zw̄

.

So we can compute

aā =
z − w
1− z̄w

z̄ − w̄
1− zw̄

=
(z − w)(z̄ − w̄)

(1− z̄w)(1− zw̄)

=
zz̄ − zw̄ − wz̄ + ww̄

1− zw̄ − z̄w + z̄wzw̄

=
|z|2 + |w|2 − (zw̄ + wz̄)

1 + |z|2|w|2 − (zw̄ + wz̄)
.

Now if |z| = 1, then from the last equation we have

aā =
1 + |w|2 − (zw̄ + wz̄)

1 + |w|2 − (zw̄ + wz̄)
= 1.

Similarly if |w| = 1,

aā =
|z|2 + 1− (zw̄ + wz̄)

1 + |z|2 − (zw̄ + wz̄)
= 1.

So in any case aā = 1 i.e., |a|2 = 1. Therefore |a| = 1 (since |a| can not be −1). Which
implies that ∣∣∣∣ z − w1− z̄w

∣∣∣∣ = 1.

Problem 2.5 Let z = x + iy = (x, y) be a complex number. If we rotate z counter-
clockwise by an angle θ, then we will get a new complex number given by zeiθ. Therefore
basically the map fθ is nothing but fθ(z) = zeiθ. But this fθ is fθ : C→ C, whereas we want
to write fθ as fθ : R2 → R2.
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We notice that vector representation of z = (x, y). On the other hand zeiθ = (x +
iy)(cos θ + i sin θ) = (x cos θ − y sin θ) + i(x sin θ + y cos θ). Therefore vector representation
of zeiθ = (x cos θ − y sin θ, x sin θ + y cos θ). So finally the fθ : R2 → R2 is given by

fθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

Problem 3.2

(a) Following the definition of p̄(z) we have

p̄(z) = ānz
n + · · ·+ ā1z + ā0.

Therefore

p̄(z̄) = ānz̄
n + · · ·+ ā1z̄ + ā0

= anzn + · · ·+ a1z + a0

= p(z).

(b) Suppose p(z) has real coefficients i.e., ai s are real for all i = 0, . . . , n. Then āi = ai for
all i = 0, . . . , n. Which implies that

p̄(z) = ānz
n + · · ·+ ā1z + ā0

= anz
n + · · ·+ a1z + a0 (since āi = ai, ∀ i = 0, . . . , n)

= p(z).

Conversely, suppose p̄(z) = p(z). Then we have

ānz
n + · · ·+ ā1z + ā0 = anz

n + · · ·+ a1z + a0.

Comparing the coefficients of zi from both sides of the above equation we have ān =
an, ān−1 = an−1, . . . , ā1 = a1, ā0 = a0. Therefore all ai s (for i = 0, . . . , n) i.e., the
coefficients of p(z) are real numbers.

(c) [Basically this problem is using the property that z1z2 = z̄1z̄2 for any two complex numbers
z1 and z2] Let us take

q(z) = amz
m + · · ·+ a1z + a0

r(z) = bnz
n + · · ·+ b1z + b0.

Now p(z) = q(z)r(z) is a m+ n degree polynomial. We can write

p(z) = ambnz
m+n + · · ·+ (a1b0 + b1a0)z + a0b0.

Therefore

p̄(z) = ambnz
m+n + · · ·+ (a1b0 + b1a0)z + a0b0

= āmb̄nz
m+n + · · ·+ (ā1b̄0 + b̄1ā0)z + ā0b̄0.
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Now

q̄(z) = āmz
m + · · ·+ ā1z + ā0

r̄(z) = b̄nz
n + · · ·+ b̄1z + b̄0.

Therefore

q̄(z)r̄(z) = āmb̄nz
m+n + · · ·+ (ā1b̄0 + b̄1ā0)z + ā0b̄0

= p̄(z).

Alternative Solution

We know that p(z) = q(z)r(z). Multiplying both sides by q̄(z)r̄(z) we have

p(z)q̄(z)r̄(z) = q(z)r(z)q̄(z)r̄(z)

= |q(z)|2|r(z)|2.

Consequently,

[p(z)]−1 =
q̄(z)r̄(z)

|q(z)|2|r(z)|2
.

But we know that if u is a complex number then u−1 = ū
|u|2 . In our case, considering

p(z) as u, we have ū = q̄(z)r̄(z) i.e., p(z) = q̄(z)r̄(z).

Problem 3.3: Let

p(z) = anz
n + · · ·+ a1z + a0 (1)

be a polynomial with real coefficients i.e., ai s are real numbers for all i = 0, . . . , n. Since
p(α) = 0, we have

anα
n + · · ·+ a1α + a0 = 0.

Now taking conjugate on both sides we have

anαn + · · ·+ a1α + a0 = 0

i.e., ānᾱ
n + · · ·+ ā1ᾱ + ā0 = 0

i.e., anᾱ
n + · · ·+ a1ᾱ + a0 = 0 (since ais are real). (2)

Now plugging in z = ᾱ in (1) we have

p(ᾱ) = anᾱ
n + · · ·+ a1ᾱ + a0.

Using (2) we conclude that p(ᾱ) = 0.

Remark: The above result says that if p(z) is a polynomial with real coefficients then
complex roots occur in conjugate pairs. Which also implies that there are even number of
complex roots.
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