Problem 1.1 The given system of equations

$$
\begin{gathered}
a x_{1}+b x_{2}=0 \\
c x_{1}+d x_{2}=0 .
\end{gathered}
$$

Multiplying the first equation by c and second equation by a we have

$$
\begin{array}{r}
a c x_{1}+b c x_{2}=0 \\
a c x_{1}+a d x_{2}=0 .
\end{array}
$$

Now subtracting the first equation from the second equation we have $(a d-b c) x_{2}=0$. Now if $a d-b c \neq 0$ then we must have $x_{2}=0$. Substituting $x_{2}=0$ in the given equations we have

$$
\begin{gathered}
a x_{1}=0 \\
c x_{1}=0 .
\end{gathered}
$$

Multiplying the first equation by d, second by b and subtracting the second equation from the first one we have $(a d-b c) x_{1}=0$. But $a d-b c \neq 0$, therefore $x_{1}=0$. Consequently, $x_{1}=0, x_{2}=0$ is the only solution of the given system of equations.

Remark: Converse of the above statement is also true.

Conversely, suppose $x_{1}=0=x_{2}$ is the only solution. We want to show that $a d-b c \neq 0$. Suppose if possible $a d-b c=0$, then we have two cases.
Case 1: $a d-b c=0$ and all of $a, b, c, d=0$. Then it is easy to see that $x_{1}=1=x_{2}$ is also a solution of the system. Which contradicts the fact that ' $x_{1}=0=x_{2}$ is the only solution'. Case 2: $a d-b c=0$ and at least one of $a, b, c, d \neq 0$. Without loss of generality we can assume that $a \neq 0$. Then we can verify that $x_{1}=-b, x_{2}=a$ is also a solution. Which again contradicts the fact that ' $x_{1}=0=x_{2}$ is the only solution'.
Therefore we can conclude that if $x_{1}=0=x_{2}$ is the only solution then we must have $a d-b c=0$.

Problem 2.1 Let us write $z=x+i y, w=u+i v$, where $x, y, u, v \in \mathbb{R}$.
(a) Then $a z=a x+i a y$. Since $a \in \mathbb{R}$, clearly we have $\operatorname{Re}(a z)=a x=a \operatorname{Re}(z)$ and $\operatorname{Im}(a z)=$ $a y=a \operatorname{Im}(z)$.
(b) $z+w=x+i y+u+i v=(x+u)+i(y+v)$. Therefore $\operatorname{Re}(z+w)=x+u=\operatorname{Re}(z)+\operatorname{Re}(w)$ and $\operatorname{Im}(z+w)=y+v=\operatorname{Im}(z)+\operatorname{Im}(w)$.

Remark: If $a \notin \mathbb{R}$ then Problem 2.1(a) may not be true. For example take $z=2+3 i$ and $a=1+2 i$. Then $a z=-4+7 i$. Therefore $\operatorname{Re}(a z)=-4$, whereas $a \operatorname{Re}(z)=(1+2 i) 2=2+4 i$. Clearly $\operatorname{Re}(a z) \neq a \operatorname{Re}(z)$.

Problem 2.3 Let us write $z=x+i y, w=u+i v$, where $x, y, u, v \in \mathbb{R}$. Then $z+w=$ $(x+u)+i(y+v)$ and $z-w=(x-u)+i(y-v)$. Now we notice that

$$
\begin{aligned}
|z|^{2} & =x^{2}+y^{2} \\
|w|^{2} & =u^{2}+v^{2} \\
|z-w|^{2} & =(x-u)^{2}+(y-v)^{2} \\
|z+w|^{2} & =(x+u)^{2}+(y+v)^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|z-w|^{2}+|z+w|^{2} & =(x-u)^{2}+(y-v)^{2}+(x+u)^{2}+(y+v)^{2} \\
& =\left[(x-u)^{2}+(x+u)^{2}\right]+\left[(y-u)^{2}+(y+v)^{2}\right] \\
& =2\left(x^{2}+u^{2}\right)+2\left(y^{2}+v^{2}\right) \\
& =2\left(x^{2}+y^{2}+u^{2}+v^{2}\right) \\
& =2\left(|z|^{2}+|w|^{2}\right) .
\end{aligned}
$$

Alternative Solution

We know that if u is a complex number, then $|u|^{2}=u \bar{u}$. Using that property we have

$$
\begin{aligned}
|z-w|^{2}+|z+w|^{2} & =(z-w)(\overline{z-w})+(z+w)(\overline{z+w}) \\
& =(z-w)(\bar{z}-\bar{w})+(z+w)(\bar{z}+\bar{w}) \\
& =(z \bar{z}-z \bar{w}-\bar{z} w+w \bar{w})+(z \bar{z}+z \bar{w}+\bar{z} w+w \bar{w}) \\
& =2(z \bar{z}+w \bar{w}) \\
& =2\left(|z|^{2}+|w|^{2}\right) .
\end{aligned}
$$

Problem 2.4 We know that either $|z|=1$ or $|w|=1$. Let us assume $|z|=1$. Then we can write $z=e^{i \theta}$ and $w=r e^{i \phi}$, where $r, \theta, \phi \in \mathbb{R}$ (and r is not necessarily 1). Now we can compute

$$
\begin{aligned}
\left|\frac{z-w}{1-\bar{z} w}\right| & =\left|\frac{e^{i \theta}-r e^{i \phi}}{1-e^{-i \theta} r e^{i \phi}}\right| \\
& =\left|\frac{e^{i \theta}\left(1-r e^{i(\phi-\theta)}\right)}{1-r e^{i(\phi-\theta)}}\right| \\
& =\left|e^{i \theta}\right| \quad\left(\text { since } \bar{z} w=r e^{i(\phi-\theta)} \neq 1\right) \\
& =1 .
\end{aligned}
$$

case 2: Assume $|w|=1$. Computation is similar as above.

Alternative Solution

Let us write

$$
a=\frac{z-w}{1-\bar{z} w} .
$$

Then

$$
\bar{a}=\frac{\overline{z-w}}{\overline{\overline{1-\bar{z} w}}}=\frac{\bar{z}-\bar{w}}{1-z \bar{w}} .
$$

So we can compute

$$
\begin{aligned}
a \bar{a} & =\frac{z-w}{1-\bar{z} w} \frac{\bar{z}-\bar{w}}{1-z \bar{w}} \\
& =\frac{(z-w)(\bar{z}-\bar{w})}{(1-\bar{z} w)(1-z \bar{w})} \\
& =\frac{z \bar{z}-z \bar{w}-w \bar{z}+w \bar{w}}{1-z \bar{w}-\bar{z} w+\bar{z} w z \bar{w}} \\
& =\frac{|z|^{2}+|w|^{2}-(z \bar{w}+w \bar{z})}{1+|z|^{2}|w|^{2}-(z \bar{w}+w \bar{z})} .
\end{aligned}
$$

Now if $|z|=1$, then from the last equation we have

$$
a \bar{a}=\frac{1+|w|^{2}-(z \bar{w}+w \bar{z})}{1+|w|^{2}-(z \bar{w}+w \bar{z})}=1 .
$$

Similarly if $|w|=1$,

$$
a \bar{a}=\frac{|z|^{2}+1-(z \bar{w}+w \bar{z})}{1+|z|^{2}-(z \bar{w}+w \bar{z})}=1
$$

So in any case $a \bar{a}=1$ i.e., $|a|^{2}=1$. Therefore $|a|=1$ (since $|a|$ can not be -1). Which implies that

$$
\left|\frac{z-w}{1-\bar{z} w}\right|=1 .
$$

Problem 2.5 Let $z=x+i y=(x, y)$ be a complex number. If we rotate z counterclockwise by an angle θ, then we will get a new complex number given by $z e^{i \theta}$. Therefore basically the map f_{θ} is nothing but $f_{\theta}(z)=z e^{i \theta}$. But this f_{θ} is $f_{\theta}: \mathbb{C} \rightarrow \mathbb{C}$, whereas we want to write f_{θ} as $f_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

We notice that vector representation of $z=(x, y)$. On the other hand $z e^{i \theta}=(x+$ iy) $(\cos \theta+i \sin \theta)=(x \cos \theta-y \sin \theta)+i(x \sin \theta+y \cos \theta)$. Therefore vector representation of $z e^{i \theta}=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$. So finally the $f_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
f_{\theta}(x, y)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta) .
$$

Problem 3.2

(a) Following the definition of $\bar{p}(z)$ we have

$$
\bar{p}(z)=\bar{a}_{n} z^{n}+\cdots+\bar{a}_{1} z+\bar{a}_{0} .
$$

Therefore

$$
\begin{aligned}
\bar{p}(\bar{z}) & =\bar{a}_{n} \bar{z}^{n}+\cdots+\bar{a}_{1} \bar{z}+\bar{a}_{0} \\
& =\overline{a_{n} z^{n}+\cdots+a_{1} z+a_{0}} \\
& =\overline{p(z)}
\end{aligned}
$$

(b) Suppose $p(z)$ has real coefficients i.e., a_{i} s are real for all $i=0, \ldots, n$. Then $\bar{a}_{i}=a_{i}$ for all $i=0, \ldots, n$. Which implies that

$$
\begin{aligned}
\bar{p}(z) & =\bar{a}_{n} z^{n}+\cdots+\bar{a}_{1} z+\bar{a}_{0} \\
& =a_{n} z^{n}+\cdots+a_{1} z+a_{0} \quad\left(\text { since } \bar{a}_{i}=a_{i}, \forall i=0, \ldots, n\right) \\
& =p(z) .
\end{aligned}
$$

Conversely, suppose $\bar{p}(z)=p(z)$. Then we have

$$
\bar{a}_{n} z^{n}+\cdots+\bar{a}_{1} z+\bar{a}_{0}=a_{n} z^{n}+\cdots+a_{1} z+a_{0}
$$

Comparing the coefficients of z^{i} from both sides of the above equation we have $\bar{a}_{n}=$ $a_{n}, \bar{a}_{n-1}=a_{n-1}, \ldots, \bar{a}_{1}=a_{1}, \bar{a}_{0}=a_{0}$. Therefore all $a_{i} \mathrm{~s}($ for $i=0, \ldots, n)$ i.e., the coefficients of $p(z)$ are real numbers.
(c) [Basically this problem is using the property that $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$ for any two complex numbers z_{1} and z_{2}] Let us take

$$
\begin{aligned}
& q(z)=a_{m} z^{m}+\cdots+a_{1} z+a_{0} \\
& r(z)=b_{n} z^{n}+\cdots+b_{1} z+b_{0} .
\end{aligned}
$$

Now $p(z)=q(z) r(z)$ is a $m+n$ degree polynomial. We can write

$$
p(z)=a_{m} b_{n} z^{m+n}+\cdots+\left(a_{1} b_{0}+b_{1} a_{0}\right) z+a_{0} b_{0} .
$$

Therefore

$$
\begin{aligned}
\bar{p}(z) & =\overline{a_{m} b_{n}} z^{m+n}+\cdots+\left(\overline{a_{1} b_{0}+b_{1} a_{0}}\right) z+\overline{a_{0} b_{0}} \\
& =\bar{a}_{m} \bar{b}_{n} z^{m+n}+\cdots+\left(\bar{a}_{1} \bar{b}_{0}+\bar{b}_{1} \bar{a}_{0}\right) z+\bar{a}_{0} \bar{b}_{0} .
\end{aligned}
$$

Now

$$
\begin{gathered}
\bar{q}(z)=\bar{a}_{m} z^{m}+\cdots+\bar{a}_{1} z+\bar{a}_{0} \\
\bar{r}(z)=\bar{b}_{n} z^{n}+\cdots+\bar{b}_{1} z+\bar{b}_{0} .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\bar{q}(z) \bar{r}(z) & =\bar{a}_{m} \bar{b}_{n} z^{m+n}+\cdots+\left(\bar{a}_{1} \bar{b}_{0}+\bar{b}_{1} \bar{a}_{0}\right) z+\bar{a}_{0} \bar{b}_{0} \\
& =\bar{p}(z) .
\end{aligned}
$$

Alternative Solution

We know that $p(z)=q(z) r(z)$. Multiplying both sides by $\bar{q}(z) \bar{r}(z)$ we have

$$
\begin{aligned}
p(z) \bar{q}(z) \bar{r}(z) & =q(z) r(z) \bar{q}(z) \bar{r}(z) \\
& =|q(z)|^{2}|r(z)|^{2}
\end{aligned}
$$

Consequently,

$$
[p(z)]^{-1}=\frac{\bar{q}(z) \bar{r}(z)}{|q(z)|^{2}|r(z)|^{2}}
$$

But we know that if u is a complex number then $u^{-1}=\frac{\bar{u}}{|u|^{2}}$. In our case, considering $p(z)$ as u, we have $\bar{u}=\bar{q}(z) \bar{r}(z)$ i.e., $\overline{p(z)}=\bar{q}(z) \bar{r}(z)$.

Problem 3.3: Let

$$
\begin{equation*}
p(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0} \tag{1}
\end{equation*}
$$

be a polynomial with real coefficients i.e., a_{i} s are real numbers for all $i=0, \ldots, n$. Since $p(\alpha)=0$, we have

$$
a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0}=0
$$

Now taking conjugate on both sides we have

$$
\begin{array}{ll}
& \overline{a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0}}=0 \\
\text { i.e., } & \bar{a}_{n} \bar{\alpha}^{n}+\cdots+\bar{a}_{1} \bar{\alpha}+\bar{a}_{0}=0 \\
\text { i.e., } & a_{n} \bar{\alpha}^{n}+\cdots+a_{1} \bar{\alpha}+a_{0}=0 \quad \text { (since } a_{i} \text { s are real). } \tag{2}
\end{array}
$$

Now plugging in $z=\bar{\alpha}$ in (1) we have

$$
p(\bar{\alpha})=a_{n} \bar{\alpha}^{n}+\cdots+a_{1} \bar{\alpha}+a_{0} .
$$

Using (2) we conclude that $p(\bar{\alpha})=0$.

Remark: The above result says that if $p(z)$ is a polynomial with real coefficients then complex roots occur in conjugate pairs. Which also implies that there are even number of complex roots.

