Name: \qquad September 11, 2014

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all seven pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem in the last page.

During the exam:

- Keep your eyes on your own exam!
- No notes/books or electronics AT ALL!

Note that the exam length is exactly 1 hr 30 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	Total
Score					

Problem 1:(20 points) TRUE or FALSE? If the statement is true then give a proof. If the statement is false then give a counterexample.
(a)(5 points) Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$. Then $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\mathbb{R}^{3}$.

Solution: FALSE. For example take $v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(1,1,0)$. These are dependent vectors and $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \neq \mathbb{R}^{3}$.
(b)(5 points) The vector $v=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ is an eigenvector of the matrix $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$.

Solution: TRUE. We can verify that

$$
A v=\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]=5\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=5 v
$$

Therefore v is an eigenvector of A, and the corresponding eigenvalue is 5 .
(c)(5 points) The matrix $M=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$ is not invertible.

Solution: FALSE. Notice that $\operatorname{det}(A)=-3 \neq 0$. Therefore A is invertible.
(d)(5 points) A linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ can not be surjective (i.e., onto).

Solution: TRUE. According to the dimension formula

$$
\begin{aligned}
& \operatorname{dim}\left(\mathbb{R}^{2}\right)=\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{Range}(T)) \\
\Rightarrow \quad & 2=\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{Range}(T)) .
\end{aligned}
$$

If T is surjective, then $\operatorname{Range}(T)=\mathbb{R}^{4}$ i.e., $\operatorname{dim}(\operatorname{Range}(T))=4$. Then from the above formula we have $\operatorname{dim}(\operatorname{null}(T))=-2$. But dimension can not be negative - a contradiction.

Problem 2: (20 points) Consider the following matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & -2 \\
0 & 0 & 2 & 4
\end{array}\right]
$$

(a) (2 points) The matrix A can be considered as a linear map $A: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$. What are the values of p and q ?
(b) (3 points) Define the null space of the linear transformation A.
(c) (8 points) Solve the system of equations

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & -2 \\
0 & 0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(d) (3 points) What is a basis of $\operatorname{null}(A)$?
(e) (2 points) Then what is the dimension of the null space of A ?
(f) (2 points) Therefore the dimension of Range (A) is \qquad
Solution:
(a) A can be considered as a linear map $A: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ i.e., $p=4, q=2$.
(b) The null space of A is

$$
\operatorname{null}(A):=\left\{x \in \mathbb{R}^{4}: A x=0\right\}
$$

(c) In the given system of equations, we notice that x_{1}, x_{3} are pivot variables and x_{2}, x_{4} are free variables. Since there are two free variables, there will be two independent solutions.
Sol 1: Assign $x_{2}=1, x_{4}=0$. Then given system of equations become

$$
\begin{aligned}
x_{1}+2-x_{3} & =0 \\
2 x_{3} & =0
\end{aligned}
$$

Solving the above system we have $x_{3}=0, x_{1}=-2$. Therefore $(-2,1,0,0)$ is a solution of the given system of equations.
Sol 2: Assign $x_{2}=0, x_{4}=1$. In this case the given system becomes as

$$
\begin{aligned}
x_{1}-x_{3}-2 & =0 \\
2 x_{3}+4 & =0
\end{aligned}
$$

Solving the above system we obtain $x_{3}=-2, x_{1}=0$. Therefore $(0,0,-2,1)$ is also a solution of the system.
(d) From the part (c) we can say that a basis of $\operatorname{null}(A)$ is $\{(-2,1,0,0),(0,0,-2,1)\}$.
(e) Since there are two vectors in the basis, we have $\operatorname{dim}(\operatorname{null}(A))=2$.
(f) Using the dimension formula, we have $\operatorname{dim}(\operatorname{Range}(A))=\operatorname{dim}\left(\mathbb{R}^{4}\right)-\operatorname{dim}(\operatorname{null}(A))=2$.

Problem 3:(20 points)[Projection Matrix] Consider the vectors $(1,0,1),(1,0,-1) \in \mathbb{R}^{3}$.
(a) (1 points) Construct a 3×2 matrix M such that the columns of M are the above two vectors.
(b) (1 points) Write down that the transpose of the matrix M. Check that M^{T} is a 2×3 matrix.
(c) (2 points) Compute the product $M^{T} M$. Check that it is a 2×2 matrix.
(\star) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an invertible matrix then A^{-1} is given by the formula $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
(d) (3 points) Using the formula (\star) or otherwise, compute the inverse of $M^{T} M$.
(e) (3 points) Using your results from part (d) and part (b), calculate $\left(M^{T} M\right)^{-1} M^{T}$. Check that it is a 2×3 matrix.
(f) (3 points) Using your results from part (e) and part (a), calculate $M\left(M^{T} M\right)^{-1} M^{T}$. Check that it is a 3×3 matrix.
(g) (3 points) Verify that the original vectors $(1,0,1),(1,0,-1)$ are the eigenvectors of the final matrix $M\left(M^{T} M\right)^{-1} M^{T}$. What are the corresponding eigenvalues?
(h) (2 points) Compute the determinant of $M\left(M^{T} M\right)^{-1} M^{T}$. Then what is the other eigenvalue?
(i) (2 points) If $P=M\left(M^{T} M\right)^{-1} M^{T}$ for some matrix M, then prove that $P^{2}=P$ (such a matrix P is called a projection matrix).

Solution:

(a) The matrix M is

$$
M=\left[\begin{array}{cc}
1 & 1 \\
0 & 0 \\
1 & -1
\end{array}\right]
$$

(b) The transpose of M is given by

$$
M^{T}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

(c) The product

$$
M^{T} M=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

(d) Using the formula (\star) we have found that

$$
\left(M^{T} M\right)^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]
$$

(e)

$$
\left(M^{T} M\right)^{-1} M^{T}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]
$$

(f)

$$
M\left(M^{T} M\right)^{-1} M^{T}=\left[\begin{array}{cc}
1 & 1 \\
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(g) We can vrify that

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
\text { and }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] & =\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
\end{aligned}
$$

Therefore the vectors $(1,0,1)$ and $(1,0,-1)$ are the eigenvectors of $M\left(M^{T} M\right)^{-1} M^{T}$, and the corresponding eigenvalues are $\lambda_{1}=1, \lambda_{2}=1$.
(h) It is easy to see that $\operatorname{det}\left[M\left(M^{T} M\right)^{-1} M^{T}\right]=0$. Therefore $\lambda_{3}=0$ is the other eigenvalue.
(i) If $P=M\left(M^{T} M\right)^{-1} M^{T}$, then we have

$$
\begin{aligned}
P^{2} & =M\left(M^{T} M\right)^{-1} M^{T} M\left(M^{T} M\right)^{-1} M^{T} \\
& =M\left(M^{T} M\right)^{-1}\left(M^{T} M\right)\left(M^{T} M\right)^{-1} M^{T} \\
& =M\left(M^{T} M\right)^{-1} M^{T} \\
& =P
\end{aligned}
$$

Problem 4: (20 points) Consider the vector space $\mathbb{R}_{2}[x]=\{$ polynomials with real coefficients of degree at most two $\}$. We define the inner product between two polynomials $p(x)$ and $q(x)$ by

$$
\begin{equation*}
\langle p, q\rangle:=\int_{0}^{1} p(x) q(x) d x \tag{1}
\end{equation*}
$$

Notice that the set $\left\{1, x, x^{2}\right\}$ forms a basis of $\mathbb{R}_{2}[x]$ (you do not need to prove this statement).
(a) (6 points) Using the definition (1), compute the inner products between the basis vectors i.e., compute $\langle 1, x\rangle,\left\langle 1, x^{2}\right\rangle,\left\langle x, x^{2}\right\rangle$.
(b) (2 points) Are these basis vectors orthogonal to each other?
(c) (12 points) Use the Gram-Schmidt orthogonalization method to find an orthogonal basis of $\mathbb{R}_{2}[x]$ (you do not need to normalize the final vectors).

Solution:

(a) Using the given definition of the inner product we have

$$
\begin{aligned}
\langle 1, x\rangle & =\int_{0}^{1} x d x=\frac{1}{2} \\
\left\langle 1, x^{2}\right\rangle & =\int_{0}^{1} x^{2} d x=\frac{1}{3} \\
\left\langle x, x^{2}\right\rangle & =\int_{0}^{1} x \cdot x^{2} d x=\int_{0}^{1} x^{3} d x=\frac{1}{4}
\end{aligned}
$$

(b) Since the inner products between the basis vectors are not zero, they are not orthogonal to each other.
(c) Let us call $f_{1}=1, f_{2}=x, f_{3}=x^{2}$. Using the Gram-Schmidt orthogonalization

$$
\begin{aligned}
\tilde{f}_{1} & =1 \\
\tilde{f}_{2} & =f_{2}-\frac{\left\langle f_{2}, \tilde{f}_{1}\right\rangle}{\left\langle\tilde{f}_{1}, \tilde{f}_{1}\right\rangle} \tilde{f}_{1} \\
& =x-\frac{\int_{0}^{1} x d x}{\int_{0}^{1} 1 d x} 1 \\
& =x-\frac{1 / 2}{1} 1 \\
& =x-\frac{1}{2} . \\
\tilde{f}_{3} & =f_{3}-\frac{\left\langle f_{3}, \tilde{f}_{2}\right\rangle}{\left\langle\tilde{f}_{2}, \tilde{f}_{2}\right\rangle} \tilde{f}_{2}-\frac{\left\langle f_{3}, \tilde{f}_{1}\right\rangle}{\left\langle\tilde{f}_{1}, \tilde{f}_{1}\right\rangle} \tilde{f}_{1} \\
& =x^{2}-\frac{\int_{0}^{1} x^{2}(x-1 / 2) d x}{\int_{0}^{1}(x-1 / 2)^{2} d x}\left(x-\frac{1}{2}\right)-\frac{\int_{0}^{1} x^{2} d x}{\int_{0}^{1} 1 d x} 1 \\
& =x^{2}-\frac{1 / 4-1 / 6}{1 / 12}\left(x-\frac{1}{2}\right)-\frac{1 / 3}{1} 1 \\
& =x^{2}-\left(x-\frac{1}{2}\right)-\frac{1}{3} \\
& =x^{2}-x+\frac{1}{6} .
\end{aligned}
$$

. Therefore an orthogonal basis of $\mathbb{R}_{2}[x]$ is $\left\{1,(x-1 / 2), x^{2}-x+1 / 6\right\}$.

Extra Credit:(2 points) Write/draw something mathematical/non-mathematical .

