Name: \qquad August 24, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all seven pages of the exam. (The number of pages includes this cover page.)

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1: (10 points) Find the area of the region bounded between the graph of the function $f(x)=e^{-x^{2}}$ and the x axis.

Solution:

Problem 2: (10 points) Draw the region of the integration and evaluate the following integral

$$
\int_{0}^{1} \int_{2 y}^{2} 4 \cos \left(x^{2}\right) d x d y
$$

Solution:

Problem 3: (15 points) Find the mass of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, where the density is given by $\delta(x, y, z)=\sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}}$. [Hint: Let $x=a u, y=b v$, and $z=c w$. Then find the mass of an appropriate region in uvw-space.]

Solution:

Problem 4:(20 points) Consider the following space curve

$$
\vec{r}(t)=\left(e^{t} \cos t\right) \hat{i}+\left(e^{t} \sin t\right) \hat{j}+2 \hat{k}
$$

(a) (5 points) Find the length of the curve from the point $(1,0,2)$ to the point $\left(0, e^{\pi / 2}, 2\right)$.
(b) (15 points) Find the tangent vector \vec{T}, unit normal vector \vec{N} and the curvature κ.

Solution:

Problem 5: (10 points) Consider the vector field $\vec{F}=2 x \hat{i}-3 y \hat{j}$, and the circle $\vec{r}(t)=(a \cos t) \hat{i}+(a \sin t) \hat{j}$, $0 \leq t \leq 2 \pi$. Find the circulation of the field along the circle, and the flux of the field across the circle.

Solution:

Problem 6:(15 points) Consider a thick spherical shell whose inner radius is a and outer radius is b and the density is $\delta=1$. Find the moment of inertia of this spherical with respect to a diameter.

Solution:

