Name: \qquad August 24, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all seven pages of the exam. (The number of pages includes this cover page.)

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1: (10 points) Evaluate the following integral

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

Solution: Let $I=\int_{0}^{\infty} e^{-x^{2}} d x$. Then we can also write $I=\int_{0}^{\infty} e^{-y^{2}} d y$.

$$
\begin{aligned}
I^{2} & =I \times I \\
& =\left(\int_{0}^{\infty} e^{-x^{2}} d x\right) \times\left(\int_{0}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \quad \text { (transforming into polar coordinate) } \\
& =\int_{0}^{\pi / 2}\left[-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{\infty}\right] d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 2} d \theta=\pi / 4
\end{aligned}
$$

Therefore $I=\sqrt{\pi} / 2$.

Problem 2: (10 points) Sketch the region of integration, and then evaluate the following integral

$$
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x
$$

Solution: Using the picture and reversing the order of integration we have

$$
\begin{aligned}
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x & =\int_{0}^{1} \int_{0}^{3 y^{2}} e^{y^{3}} d x d y \\
& =\int_{0}^{1} 3 y^{2} e^{y^{3}} d x \\
& =\left.e^{y^{3}}\right|_{0} ^{1} \\
& =e-1
\end{aligned}
$$

Problem 3: (15 points) Find the y-coordinate of the centroid of the wedge cut from the cylinder $x^{2}+y^{2}=1$ by the planes $z=-y$ and $z=0$, where the density is given by $\delta(x, y, z)=1$.

Solution: Mass of the solid is

$$
\begin{aligned}
M & =\int_{\pi}^{2 \pi} \int_{0}^{1} \int_{0}^{-r \sin \theta} 1 \cdot d z r d r d \theta \\
& =-\int_{\pi}^{2 \pi} \int_{0}^{1} r^{2} \sin \theta d r d \theta \\
& =-\frac{1}{3} \int_{\pi}^{2 \pi} \sin \theta d \theta \\
& =\frac{1}{3}[\cos 2 \pi-\cos \pi]=\frac{2}{3}
\end{aligned}
$$

The first moment with respect to the $x z$-plane is

$$
\begin{aligned}
M_{x z} & =\int_{\pi}^{2 \pi} \int_{0}^{1} \int_{0}^{-r \sin \theta} r \sin \theta \cdot d z r d r d \theta \\
& =-\int_{\pi}^{2 \pi} \int_{0}^{1} r^{3} \sin ^{2} \theta d \theta \\
& =-\frac{1}{4} \int_{\pi}^{2 \pi} \sin ^{2} \theta d \theta \\
& =\frac{1}{8} \int_{\pi}^{2 \pi}(\cos 2 \theta-1) d \theta \\
& =-\pi / 8
\end{aligned}
$$

Therefore the y coordinate of the centroid is $M_{x z} / M=-3 \pi / 16$.

Problem 4:(15 points) Consider the following space curve

$$
\vec{r}(t)=\left(e^{t} \cos t\right) \hat{i}+\left(e^{t} \sin t\right) \hat{j}+2 \hat{k}
$$

(a) Find the length of the curve from the point $(1,0,2)$ to the point $\left(0, e^{\pi / 2}, 2\right)$.
(b) Find the tangent vector \vec{T}, unit normal vector \vec{N} and the curvature κ.

Solution: From the given equation of the curve we have

$$
\begin{aligned}
\vec{v}(t) & ==\frac{d \vec{r}}{d t}=e^{t}(\cos t-\sin t) \hat{i}+e^{t}(\sin t+\cos t) \hat{j} \\
|\vec{v}(t)| & =e^{t} \sqrt{(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}}=e^{t} \sqrt{2}
\end{aligned}
$$

(a) The $\vec{r}(t)$ passes through the points $(1,0,2)$ and $\left(0, e^{\pi / 2}, 2\right)$ when $t=0$ and $t=\pi / 2$ respectively.

Therefore length of the curve between $(1,0,2)$ and $\left(0, e^{\pi / 2}, 2\right)$ is

$$
\begin{aligned}
L & =\int_{0}^{\pi / 2}|\vec{v}(t)| d t \\
& =\int_{0}^{\pi / 2} e^{t} \sqrt{2} d t \\
& =\sqrt{2}\left(e^{\pi / 2}-1\right)
\end{aligned}
$$

(b) The tangent vector \vec{T} is given by

$$
\vec{T}(t)=\frac{\vec{v}(t)}{|\vec{v}(t)|}=\frac{1}{\sqrt{2}}(\cos t-\sin t) \hat{i}+\frac{1}{\sqrt{2}}(\sin t+\cos t) \hat{j}
$$

To find the unit normal vector \vec{N} and the curvature κ, we need to compute

$$
\begin{aligned}
\frac{d \vec{T}}{d t} & =-\frac{1}{\sqrt{2}}(\sin t+\cos t) \hat{i}+\frac{1}{\sqrt{2}}(\cos t-\sin t) \hat{j} \\
\left|\frac{d \vec{T}}{d t}\right| & =\frac{1}{\sqrt{2}} \sqrt{(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}}=1
\end{aligned}
$$

Therefore the unit normal vector \vec{N} and the curvature κ are given by

$$
\begin{aligned}
\vec{N} & =\frac{d \vec{T} / d t}{|d \vec{T} / d t|}=-\frac{1}{\sqrt{2}}(\sin t+\cos t) \hat{i}+\frac{1}{\sqrt{2}}(\cos t-\sin t) \hat{j} \\
\kappa & =\frac{1}{|\vec{v}(t)|}\left|\frac{d \vec{T}}{d t}\right|=\frac{1}{e^{t} \sqrt{2}}
\end{aligned}
$$

Problem 5: (15 points) Find the center of mass of a thin wire lying along the curve $\vec{r}(t)=t \hat{i}+2 t \hat{j}+(2 / 3) t^{3 / 2} \hat{k}$, $0 \leq t \leq 2$, if the density is $\delta=3 \sqrt{5+t}$.

Solution: From the equation of the curve

$$
\begin{aligned}
\vec{v}(t) & =\frac{d \vec{r}}{d t}=\hat{i}+2 \hat{j}+\sqrt{t} \hat{k} \\
d s & =|\vec{v}(t)| d t=\sqrt{5+t} d t
\end{aligned}
$$

Therefore the mass and the moments of the wire are given by

$$
\begin{aligned}
M & =\int_{t=0}^{2} \delta d s \\
& =3 \int_{0}^{2}(5+t) d t \\
& =3\left[5 t+t^{2} /\left.2\right|_{0} ^{2}\right] \\
& =36, \\
M_{y z} & =\int_{t=0}^{2} x \delta d s \\
& =\int_{0}^{2} 3 t(5+t) d t \\
& =\left[15 t^{2} / 2+\left.t^{3}\right|_{0} ^{2}\right] \\
& =38, \\
M_{x z} & =\int_{t=0}^{2} y \delta d s \\
& =6 \int_{0}^{2} t(5+t) d t \\
& =76, \\
M_{x y} & =\int_{t=0}^{2} z \delta d s \\
& =2 \int_{0}^{2} t^{3 / 2}(5+t) d t \\
& =2\left[2 t^{5 / 2}+\left.\frac{2}{7} t^{7 / 2}\right|_{0} ^{2}\right] \\
& =4\left[2^{5 / 2}+\frac{1}{7} 2^{7 / 2}\right] \\
& =\frac{36}{7} 2^{5 / 2}
\end{aligned}
$$

Therefore the center of mass is

$$
\left(\frac{M_{y z}}{M}, \frac{M_{x z}}{M}, \frac{M_{x y}}{M}\right)=\left(\frac{19}{18}, \frac{19}{9}, \frac{4 \sqrt{2}}{7}\right)
$$

Problem 6: (15 points) Consider the vector field $\vec{F}=(y \sin z) \hat{i}+(x \sin z) \hat{j}+(x y \cos z) \hat{k}$.
(a) Is it a conservative vector field?
(b) Find the work done while moving a particle from $(0,0,0)$ to $(1,1,1)$ in this vector field.

Solution:

(a) Curl of the given vector field is

$$
\begin{aligned}
\vec{\nabla} \times \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y \sin z & x \sin z & x y \cos z
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y} x y \cos z-\frac{\partial}{\partial z} x \sin z\right) \hat{i}+\left(\frac{\partial}{\partial z} y \sin z-\frac{\partial}{\partial x} x y \cos z\right) \hat{j}+\left(\frac{\partial}{\partial x} x \sin z-\frac{\partial}{\partial y} y \sin z\right) \\
& =(x \cos z-x \cos z) \hat{i}+(y \cos z-y \cos z) \hat{j}+(\sin z-\sin z) \hat{k} \\
& =\overrightarrow{0} .
\end{aligned}
$$

Therefore the given vector field is a conservative vector field.
(b) Since the vector field \vec{F} is a conservative vector field, $\vec{F}=\vec{\nabla} f$ for some scalar function f, and the work done is $f(1,1,1)-f(0,0,0)$. From \vec{F} we see that

$$
\frac{\partial f}{\partial x}=y \sin z, \quad \frac{\partial f}{\partial y}=x \sin z, \quad \frac{\partial f}{\partial z}=x y \cos z
$$

Integrating each equation we have

$$
\begin{aligned}
f(x, y, z) & =x y \sin z+C_{1}(y, z) \\
f(x, y, z) & =x y \sin z+C_{2}(x, z) \\
f(x, y, z) & =x y \sin z+C_{3}(x, y)
\end{aligned}
$$

Combining all the equations, we obtain $f(x, y, z)=x y \sin z+C$, where C is a constant independent of x, y, z. Therefore the work done is $f(1,1,1)-f(0,0,0)=\sin 1$.

