MAT 21D Max time: 1 hr 20 mins Practice Midterm 1 Solutions

Name: August 24, 2016

Before the exam begins:
e Write your name above.

e Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones,
not even to tell time (and not even if it’s just in airplane mode).

e You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page = max A4).
As soon as the exam starts:

e Take a quick breath to relax! If you have truly worked through all the homework problems then you
will do fine!

e Check that you have all seven pages of the exam. (The number of pages includes this cover page.)
During the exam:
e Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins. When you are told to stop, you must stop IMMEDI-
ATELY. This is in fairness to all students. Do not think that you are the exception to this rule.
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Problem 1:(10 points) Evaluate the following integral
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Solution: Let I = [ ¢~ dz. Then we can also write [ = I eV dy.
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Problem 2: (10 points) Sketch the region of integration, and then evaluate the following integral
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Solution: Using the picture and reversing the order of integration we have
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Problem 3:(15 points) Find the y-coordinate of the centroid of the wedge cut from the cylinder 2% +y? = 1
by the planes z = —y and z = 0, where the density is given by d(x,y,z) = 1.

Solution: Mass of the solid is
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The first moment with respect to the xz-plane is
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Therefore the y coordinate of the centroid is M,,/M = —3x/16.






Problem 4:(15 points) Consider the following space curve
7(t) = (e* cost)i + (' sint)] + 2k.

(a) Find the length of the curve from the point (1,0,2) to the point (0,e™/2,2).
(b) Find the tangent vector T', unit normal vector N and the curvature x.

Solution: From the given equation of the curve we have

dr .
o(t) = d: et(cost —sint)i + e (sint + cost)]
|5(t)] = e'\/(cost —sint)2+ (sint + cost)? = e'V/2.

(a) The 7(t) passes through the points (1,0,2) and (0,e™/2,2) when ¢t = 0 and t = 7/2 respectively.
Therefore length of the curve between (1,0,2) and (0,e™/2,2) is
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(b) The tangent vector T is given by
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1) = o() = —(cost —sint)i + —(sint + cost)j.
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To find the unit normal vector N and the curvature K, we need to compute
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Therefore the unit normal vector N and the curvature x are given by
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Problem 5: (15 points) Find the center of mass of a thin wire lying along the curve 7(t) = ti+2tj+(2/3)t3/2k,
0 <t <2, if the density is 6 = 3+/5 +¢.

Solution: From the equation of the curve
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Therefore the mass and the moments of the wire are given by
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Therefore the center of mass is
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Problem 6:(15 points) Consider the vector field F = (ysin z)i + (zsin 2)j + (zy cos 2)k.
(a) Is it a conservative vector field?
(b) Find the work done while moving a particle from (0,0,0) to (1,1,1) in this vector field.

Solution:

(a) Curl of the given vector field is
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ysinz xsinz zycosz

= gm cosz—gxsinz i+ 2 sinz—gm cosz |+ ixsinz—g sin z
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(zcosz — xcos 2)i + (ycos z — ycos z)j + (sinz — sin 2)k

= 0

Therefore the given vector field is a conservative vector field.
(b) Since the vector field F is a conservative vector field, F' = V f for some scalar function f, and the
work done is f(1,1,1) — f(0,0,0). From F we see that
of of of

— =ysinz, —— = xsinz, 5 = T COS 2.
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Integrating each equation we have

f(x,y,2) = aysinz+ Ci(y, 2)
flx,y,2) = wysinz+ Ca(z,2)
f(xvyaz) = xysianng(:v,y).

Combining all the equations, we obtain f(z,y, z) = zysin z+ C, where C is a constant independent of x, y, 2.
Therefore the work done is f(1,1,1) — £(0,0,0) = sin 1.
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