Name: $\qquad$ August 18, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$ ).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all seven pages of the exam. (The number of pages includes this cover page.)

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

| Problem | 1 | 2 | 3 | 4 | 5 | 6 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Score |  |  |  |  |  |  |  |

Problem 1: (10 points) Evaluate the following integral

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

[Hint: Consider the integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x$.]

## Solution:

Problem 2: (10 points) Sketch the region of integration, and then evaluate the following integral

$$
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x
$$

## Solution:

Problem 3:(15 points) Find the $y$-coordinate of the centroid of the wedge cut from the cylinder $x^{2}+y^{2}=1$ by the planes $z=-y$ and $z=0$, where the density is given by $\delta(x, y, z)=1$.


## Solution:

Problem 4: (15 points) Consider the following space curve

$$
\vec{r}(t)=\left(e^{t} \cos t\right) \hat{i}+\left(e^{t} \sin t\right) \hat{j}+2 \hat{k}
$$

(a) Find the length of the curve from the point $(1,0,2)$ to the point $\left(0, e^{\pi / 2}, 2\right)$.
(b) Find the tangent vector $\vec{T}$, unit normal vector $\vec{N}$ and the curvature $\kappa$.

## Solution:

Problem 5: (15 points) Find the center of mass of a thin wire lying along the curve $\vec{r}(t)=t \hat{i}+2 t \hat{j}+(2 / 3) t^{3 / 2} \hat{k}$, $0 \leq t \leq 2$, if the density is $\delta=3 \sqrt{5+t}$.

## Solution:

Problem 6: (15 points) Consider the vector field $\vec{F}=(y \sin z) \hat{i}+(x \sin z) \hat{j}+(x y \cos z) \hat{k}$.
(a) Is it a conservative vector field?
(b) Find the work done while moving a particle from $(0,0,0)$ to $(1,1,1)$ in this vector field.

## Solution:

