Name: \qquad September 10, 2015

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all eight pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem on the last page.

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1: (10 points) Find the mass of the solid that is bounded above by the cylinder $z=4-x^{2}$, on the sides by the cylinder $x^{2}+y^{2}=4$, and below by he $x y$-plane. The density of the solid is given by $\delta(x, y, z)=\sqrt{x^{2}+y^{2}}$.

Solution:

Mass of the solid is

$$
\begin{aligned}
M & =\iint_{x^{2}+y^{2} \leq 4} \sqrt{x^{2}+y^{2}}\left(4-x^{2}\right) d y d x \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r\left(4-r^{2} \cos ^{2} \theta\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4 r^{2}-r^{4} \cos ^{2} \theta\right) d r d \theta \\
& =\int_{0}^{2 \pi} \frac{4}{3} r^{3}-\left.\frac{1}{5} r^{5} \cos ^{2} \theta\right|_{0} ^{2} d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{32}{3}-\frac{16}{5}-\frac{16}{5} \cos 2 \theta\right) d \theta \\
& =\left(\frac{32}{3}-\frac{16}{5}\right) 2 \pi \\
& =\frac{224 \pi}{15}
\end{aligned}
$$

Problem 2: (10 points) Find the moment of inertia with respect to a diameter of the solid sphere of radius a.
Solution: Since the sphere is a spherically symmetric object, the moment of inertia with respect to any diameter will be the same. Let us find the moment of inertia with respect to the z-axis. Density of the sphere is $\delta=1$.

$$
\begin{aligned}
I_{z} & =\iiint\left(x^{2}+y^{2}\right) \delta d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a}\left(\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta\right) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{4} \sin ^{3} \phi d \rho d \phi d \theta \\
& =\frac{a^{5}}{5} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(1-\cos ^{2} \phi\right) \sin \phi d \phi d \theta \\
& =\frac{a^{5}}{5} \int_{0}^{2 \pi}\left[-\cos \phi+\left.\frac{1}{3} \cos ^{3} \phi\right|_{0} ^{\pi}\right] d \theta \\
& =\frac{a^{5}}{5} \int_{0}^{2 \pi} \frac{4}{3} d \theta \\
& =\frac{8 \pi a^{5}}{15} .
\end{aligned}
$$

Problem 3:(15 points) Consider the space curve

$$
\vec{r}(t)=\left(\cos ^{3} t\right) \hat{i}+\left(\sin ^{3} t\right) \hat{j}, \quad 0 \leq t \leq \pi / 2 .
$$

(a) (5 points) Find the length of the curve.
(b) (10 points) Find the curvature κ.

Solution: (b) We compute

$$
\begin{aligned}
\vec{v}(t)=\frac{d \vec{r}}{d t} & =\left(-3 \cos ^{2} t \sin t\right) \hat{i}+\left(3 \sin ^{2} t \cos t\right) \hat{j} \\
& =3 \cos t \sin t(-\cos t \hat{i}+\sin t \hat{j}) \\
\text { Therefore, }|\vec{v}(t)| & =3|\cos t \sin t| \sqrt{(-\cos t)^{2}+\sin ^{2} t} \\
& =3|\cos t \sin t| \\
& =3 \cos t \sin t \quad(\text { since } 0 \leq t \leq \pi / 2) \\
\text { So, } \vec{T} & =\frac{\vec{v}(t)}{|\vec{v}(t)|} \\
& =-\cos t \hat{i}+\sin t \hat{j} \\
\text { Consequently, } \frac{d \vec{T}}{d t} & =\sin t \hat{i}+\cos t \hat{j} .
\end{aligned}
$$

So, the curvature is

$$
\begin{aligned}
\kappa & =\frac{1}{|\vec{v}(t)|}\left|\frac{d \vec{T}}{d t}\right| \\
& =\frac{1}{3 \cos t \sin t} \sqrt{\sin ^{2} t+\cos ^{2} t} \\
& =\frac{1}{3 \cos t \sin t}
\end{aligned}
$$

(a) The length of the curve is

$$
\begin{aligned}
L & =\int_{0}^{\pi / 2}|\vec{v}(t)| d t \\
& =\int_{0}^{\pi / 2} 3 \cos t \sin t d t \\
& =\frac{3}{2} \int_{0}^{\pi / 2} \sin 2 t d t \\
& =-\left.\frac{3}{4} \cos 2 t\right|_{0} ^{\pi / 2} \\
& =\frac{3}{2}
\end{aligned}
$$

Problem 4: (10 points) Consider the vector field

$$
\vec{F}=(2 x \ln y-y z) \hat{i}+\left(\frac{x^{2}}{y}-x z\right) \hat{j}-x y \hat{k}
$$

Find the work done while moving a particle in the above vector field from $(1,2,1)$ to $(2,1,1)$ along the straight line.

Solution: Curl of the vector field \vec{F} is given by

$$
\begin{aligned}
\vec{\nabla} \times \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x \ln y-y z & \frac{x^{2}}{y}-x z & -x y
\end{array}\right| \\
& =(-x+x) \hat{i}+(-y+y) \hat{j}+\left(\frac{2 x}{y}-z-\frac{2 x}{y}+z\right) \hat{k} \\
& =\overrightarrow{0}
\end{aligned}
$$

Therefore \vec{F} is a conservative vector field. Let ϕ be the potential function of the vector field i.e., $\vec{F}=\vec{\nabla} \phi$. Then

$$
\begin{aligned}
\frac{\partial \phi}{\partial x} & =2 x \ln y-y z \\
\frac{\partial \phi}{\partial y} & =\frac{x^{2}}{y}-x z \\
\frac{\partial \phi}{\partial z} & =-x y
\end{aligned}
$$

Integrating each differential equation with respect to the corresponding variables, we have

$$
\begin{aligned}
\phi(x, y, z) & =x^{2} \ln y-x y z+C_{1}(y, z) \\
\phi(x, y, z) & =x^{2} \ln y-x y z+C_{2}(x, z) \\
\phi(x, y, z) & =-x y z+C_{3}(x, y)
\end{aligned}
$$

Looking at the above equations, we see that if we take $C_{1}(y, z)=C=C_{2}(x, z)$, and $C_{3}(x, y)=x^{2} \ln y+C$, then the three equations of ϕ become he same. Therefore $\phi(x, y, z)=x^{2} \ln y-x y z+C$, where C is an arbitrary constant which is independent of x, y, z.

Since \vec{F} is a conservative vector field, the amount of work done while moving a particle from $(1,2,1)$ to $(2,1,1)$ is given by

$$
\begin{aligned}
W & =\phi(2,1,1)-\phi(1,2,1) \\
& =4 \ln 1-2-\ln 2+2 \\
& =-\ln 2
\end{aligned}
$$

Problem 5: (15 points) Let S be the "cup" surface formed by rotating the curve $x=\sin z, y=0,0 \leq z \leq \pi / 2$ around the z-axis. Find the mass of the surface, where the density is given by $\delta(x, y, z)=\sqrt{1-x^{2}-y^{2}}$.

Solution: A parametric equation of the "cup" surface is

$$
\vec{R}(z, \theta)=\sin z \cos \theta \hat{i}+\sin z \sin \theta \hat{j}+z \hat{k}, \quad 0 \leq z \leq \pi / 2,0 \leq \theta \leq 2 \pi
$$

The mass of the surface is given by

$$
M=\iint \delta d \sigma
$$

where $d \sigma=\left|\frac{\partial \vec{R}}{\partial z} \times \frac{\partial \vec{R}}{\partial \theta}\right| d z d \theta$.

$$
\begin{aligned}
\frac{\partial \vec{R}}{\partial z} & =\cos z \cos \theta \hat{i}+\cos z \sin \theta \hat{j}+\hat{k} \\
\frac{\partial \vec{R}}{\partial \theta} & =-\sin z \sin \theta \hat{i}+\sin z \cos \theta \hat{j} \\
\frac{\partial \vec{R}}{\partial z} \times \frac{\partial \vec{R}}{\partial \theta} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\cos z \cos \theta & \cos z \sin \theta & 1 \\
-\sin z \sin \theta & \sin z \cos \theta & 0
\end{array}\right| \\
& =(0-\sin z \cos \theta) \hat{i}-(\sin z \sin \theta) \hat{j}+(\cos z \sin z) \hat{k} \\
\left|\frac{\partial \vec{R}}{\partial z} \times \frac{\partial \vec{R}}{\partial \theta}\right| & =\sqrt{(-\sin z \cos \theta)^{2}+(\sin z \sin \theta)^{2}+(\cos z \sin z)^{2}} \\
& =\sqrt{\sin ^{2} z+(\cos z \sin z)^{2}} \\
& =\sin z \sqrt{1+\cos ^{2} z} \quad(\operatorname{since} 0 \leq z \leq \pi / 2, \sin z \geq 0)
\end{aligned}
$$

The density of the surface is given by

$$
\begin{aligned}
\delta & =\sqrt{1-x^{2}-y^{2}} \\
& =\sqrt{1-\sin ^{2} z \cos ^{2} \theta-\sin ^{2} z \sin ^{2} \theta} \\
& =\sqrt{1-\sin ^{2} z} \\
& =|\cos z| \\
& =\cos z \quad(\text { since } 0 \leq z \leq \pi / 2, \cos z \geq 0)
\end{aligned}
$$

Therefore mass of the surface is

$$
\begin{aligned}
M & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos z \sin z \sqrt{1+\cos ^{2} z} d z d \theta \\
& =\int_{0}^{2 \pi}\left[-\left.\frac{1}{3}\left(1+\cos ^{2} z\right)^{3 / 2}\right|_{0} ^{\pi / 2}\right] d \theta \\
& =\frac{1}{3}(2 \sqrt{2}-1) \int_{0}^{2 \pi} d \theta \\
& =\frac{2 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

Alternative Method

We know that if we rotate the graph of $x=f(z)$ with respect to the z-axis, then it creates a surface. If we cut that surface by the horizontal plane $z=c$, we obtain a circle of radius $f(c)$. Equation of that circle is $x^{2}+y^{2}=(f(c))^{2}, z=c$. Since this is true for any z, the equation of the surface of revolution is $x^{2}+y^{2}=(f(z))^{2}$. In our case, the equation of the surface is $x^{2}+y^{2}=\sin ^{2} z, 0 \leq z \leq \pi / 2$. Which can also be written as $F(x, y, z)=0$, where $F(x, y, z)=x^{2}+y^{2}-\sin ^{2} z, 0 \leq z \leq \pi / 2$. So $\vec{\nabla} F=2 x \hat{i}+2 y \hat{j}-(2 \sin z \cos z) \hat{k}$. Mass of the surface is

$$
M=\iint \delta d \sigma
$$

The projection of this surface on the $x y$-plane is the unit circle of radius 1 . So

$$
\begin{aligned}
M & =\iint_{x^{2}+y^{2} \leq 1} \sqrt{1-x^{2}-y^{2}} \frac{|\vec{\nabla} F|}{|\vec{\nabla} F \cdot \hat{k}|} d x d y \\
& =\iint_{x^{2}+y^{2} \leq 1} \sqrt{1-x^{2}-y^{2}} \frac{2 \sqrt{x^{2}+y^{2}+\sin ^{2} z \cos ^{2} z}}{|2 \sin z \cos z|} d x d y \\
& =\iint_{x^{2}+y^{2} \leq 1}|\cos z| \frac{|\sin z| \sqrt{1+\cos ^{2} z}}{|\sin z \cos z|} d x d y \quad\left(\text { since } x^{2}+y^{2}=\sin ^{2} z\right) \\
& =\iint_{x^{2}+y^{2} \leq 1} \sqrt{2-x^{2}-y^{2}} d x d y \quad\left(\text { since } x^{2}+y^{2}=\sin ^{2} z\right) \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2-r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi}\left[-\left.\frac{1}{3}\left(2-r^{2}\right)^{3 / 2}\right|_{0} ^{1}\right] d \theta \\
& =\frac{2 \pi}{3}(2 \sqrt{2}-1) .
\end{aligned}
$$

Problem 6: (15 points) Let \hat{n} be the outer unit normal (normal away from the origin) of the parabolic shell $S: 4 x^{2}+y+z^{2}=4, y \geq 0$, and let

$$
\vec{F}=\left(-z+\frac{1}{2+x}\right) \hat{i}+\left(\tan ^{-1} y\right) \hat{j}+\left(x+\frac{1}{4+z}\right) \hat{k}
$$

Find the value of

$$
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
$$

Solution: The boundary of the parabolic shell lies on the $x z$-plane. And the equation of the boundary is $4 x^{2}+z^{2}=4$ i.e., $x^{2}+(z / 2)^{2}=1$. A parametric equation of this boundary (in the counterclockwise orientation) is

$$
C: \vec{r}(t)=\sin t \hat{i}+2 \cos t \hat{k}, \quad 0 \leq t \leq 2 \pi
$$

Using the Stokes' theorem we have

$$
\begin{aligned}
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma & =\oint_{C} \vec{F} \cdot \frac{d \vec{r}}{d t} d t \\
& =\oint_{C}\left[\left(-z+\frac{1}{2+x}\right) \cos t+\left(x+\frac{1}{4+z}\right)(-2 \sin t)\right] d t \\
& =\int_{0}^{2 \pi}\left[\left(-2 \cos t+\frac{1}{2+\sin t}\right) \cos t+\left(\sin t+\frac{1}{4+2 \cos t}\right)(-2 \sin t)\right] d t \\
& =\int_{0}^{2 \pi}\left[-2+\frac{\cos t}{2+\sin t}-\frac{2 \sin t}{4+2 \cos t}\right] d t \\
& =-2 t+\ln |2+\sin t|+\ln |4+2 \cos t|_{0}^{2 \pi} \\
& =-4 \pi
\end{aligned}
$$

Extra Credit:(2 points) I'll think about it.

