Name: \qquad September 4, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no calculator, no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all eight pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem on the last page.

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1:(10 points) Find the mass of the solid that is bounded above by the cylinder $z=4-x^{2}$, on the sides by the cylinder $x^{2}+y^{2}=4$, and below by he $x y$-plane. The density of the solid is given by $\delta(x, y, z)=\sqrt{x^{2}+y^{2}}$.

Solution:

Problem 2: (10 points) Find the moment of inertia with respect to a diameter of the solid sphere of radius a.

Solution:

Problem 3:(15 points) Consider the space curve

$$
\vec{r}(t)=\left(\cos ^{3} t\right) \hat{i}+\left(\sin ^{3} t\right) \hat{j}, \quad 0 \leq t \leq \pi / 2
$$

(a) (5 points) Find the length of the curve.
(b) (5 points) Find the curvature κ.

Solution:

Problem 4:(15 points) Consider the vector field

$$
\vec{F}=(2 x \ln y-y z) \hat{i}+\left(\frac{x^{2}}{y}-x z\right) \hat{j}-x y \hat{k}
$$

Find the work done while moving a particle in the above vector field from $(1,2,1)$ to $(2,1,1)$ along the straight line.

Solution:

Problem 5: (15 points) Let S be the "cup" surface formed by rotating the curve $x=\sin z, y=0,0 \leq z \leq \pi / 2$ around the z-axis. Find the mass of the surface, where the density is given by $\delta(x, y, z)=\sqrt{1-x^{2}-y^{2}}$.

Solution:

Problem 6: (15 points) Let \hat{n} be the outer unit normal (normal away from the origin) of the parabolic shell $S: \quad 4 x^{2}+y+z^{2}=4, y \geq 0$, and let

$$
\vec{F}=\left(-z+\frac{1}{2+x}\right) \hat{i}+\left(\tan ^{-1} y\right) \hat{j}+\left(x+\frac{1}{4+z}\right) \hat{k} .
$$

Find the value of

$$
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
$$

Solution:

Extra Credit:(2 points) I'll think about it.

