Name: \qquad September 10, 2015

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all eight pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem on the last page.

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1: (10 points) Evaluate the following integral

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

Solution: Reversing the order of integration

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x & =\int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{x e^{2 y}}{4-y} d x d y \\
& =\int_{0}^{4} \frac{e^{2 y}}{4-y}\left[\left.\frac{x^{2}}{2}\right|_{0} ^{\sqrt{4-y}}\right] d y \\
& =\frac{1}{2} \int_{0}^{4} e^{2 y} d y \\
& =\left.\frac{1}{4} e^{2 y}\right|_{0} ^{4} \\
& =\frac{1}{4}\left(e^{8}-1\right)
\end{aligned}
$$

Problem 2: (10 points) Find the mass of the solid spherical cap $x^{2}+y^{2}+z^{2} \leq 25, z \geq 3$ [which is obtained by cutting the solid sphere $x^{2}+y^{2}+z^{2} \leq 25$ by the plane $\left.z=3\right]$. The density of the cap is given by $\delta=1$.

Solution: The plane $z=3$ cuts the sphere $x^{2}+y^{2}+z^{2} \leq 25$ along the circle $x^{2}+y^{2}+3^{2} \leq 25$ i.e., $x^{2}+y^{2} \leq 16$. In the cylindrical coordinate system, the mass of spherical cap is given by the following integral

$$
\begin{aligned}
M & =\int_{0}^{2 \pi} \int_{0}^{4} \int_{3}^{\sqrt{25-r^{2}}} 1 \cdot d z r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{4}\left(\sqrt{25-r^{2}}-3\right) r d r d \theta \\
& =\int_{0}^{2 \pi}-\frac{1}{3}\left(25-r^{2}\right)^{3 / 2}-\left.\frac{3}{2} r^{2}\right|_{0} ^{4} d \theta \\
& =\int_{0}^{2 \pi}\left(-\frac{1}{3} 9^{3 / 2}-24+\frac{1}{3}(25)^{3 / 2}\right) d \theta \\
& =\int_{0}^{2 \pi}\left(-\frac{27}{3}-24+\frac{125}{3}\right) d \theta \\
& =\int_{0}^{2 \pi} \frac{26}{3} d \theta \\
& =\frac{52 \pi}{3}
\end{aligned}
$$

Problem 3:(15 points) Consider the following space curve

$$
\vec{r}(t)=\left(e^{t} \cos t\right) \hat{i}+\left(e^{t} \sin t\right) \hat{j}+\sqrt{2} e^{t} \hat{k}
$$

(a) Find the curvature κ of above space curve at the point $t=0$.
(b) Find the tangential component a_{T} and the normal component a_{N} of acceleration at $t=0$.

Solution: (a) Differentiating the parametric equation of the curve with respect to t we obtain

$$
\begin{aligned}
\vec{v}(t) & =e^{t}(\cos t-\sin t) \hat{i}+e^{t}(\sin t+\cos t) \hat{j}+\sqrt{2} e^{t} \hat{k} \\
|\vec{v}(t)| & =e^{t} \sqrt{(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}+2}=2 e^{t} \\
\vec{T}(t) & =\frac{\vec{v}(t)}{|\vec{v}(t)|}=\frac{1}{2}(\cos t-\sin t) \hat{i}+\frac{1}{2}(\sin t+\cos t) \hat{j}+\frac{\sqrt{2}}{2} \hat{k} \\
\frac{d \vec{T}}{d t} & =\frac{1}{2}(-\sin t-\cos t) \hat{i}+\frac{1}{2}(\cos t-\sin t) \hat{j} \\
\left|\frac{d \vec{T}}{d t}\right| & =\frac{1}{2} \sqrt{(\sin t+\cos t)^{2}+(\cos t-\sin t)^{2}}=\frac{\sqrt{2}}{2} \\
\kappa(t) & =\frac{|d \vec{T} / d t|}{|\vec{v}(t)|}=\frac{\sqrt{2}}{4 e^{t}} .
\end{aligned}
$$

Therefore the curvature at $t=0$ is $\kappa(0)=\sqrt{2} / 4$.
(b) Tangential and the normal components of acceleration are given by

$$
\begin{aligned}
a_{T}(t) & =\frac{d}{d t}|\vec{v}(t)|=2 e^{t} \\
a_{N}(t) & =\kappa(t)|\vec{v}(t)|^{2}=\sqrt{2} e^{t}
\end{aligned}
$$

Therefore the tangential and the normal components of acceleration at $t=0$ are given by $a_{T}(0)=2, a_{N}(0)=$ $\sqrt{2}$.

Problem 4:(15 points)
Consider the vector fields \vec{F}_{1}, \vec{F}_{2}, and the curve C given below

$$
\begin{aligned}
& \vec{F}_{1}=\left(3 x^{2} y^{2}+2 y\right) \hat{i}+\left(2 x^{3} y-3 x\right) \hat{j} \\
& \vec{F}_{2}=(2 y \cos x+3 x) \hat{i}+\left(y^{2} \sin x+2 y\right) \hat{j} \\
& C: \vec{r}(t)=\cos ^{3} t \hat{i}+\sin ^{3} t \hat{j}, \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

(a) Find the area of the region enclosed by the curve C.
(b) Find the counter-clockwise circulation of the vector field \vec{F}_{1} along the curve C.
(c) Find the outward flux of the vector field \vec{F}_{2} across the curve C.
Solution: (a) From Green's theorem, we know that the area enclosed by a curve $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{t}$ is given by $\frac{1}{2} \oint(x d y-y d x)$. Therefore, in our case

Area $=\frac{1}{2} \int_{0}^{2 \pi}\left[\left(\cos ^{3} t\right)\left(3 \sin ^{2} t \cos t\right)-\left(\sin ^{3} t\right)\left(-3 \cos ^{2} t \sin t\right)\right]$ Figure 1: Graph of the curve C.
$=\frac{3}{2} \int_{0}^{2 \pi}\left[\cos ^{4} t \sin ^{2} t+\sin ^{4} t \cos ^{2} t\right] d t$
$=\frac{3}{2} \int_{0}^{2 \pi} \cos ^{2} t \sin ^{2} t d t$
$=\frac{3}{8} \int_{0}^{2 \pi} \sin ^{2} 2 t d t$
$=\frac{3}{16} \int_{0}^{2 \pi}(1-\cos 4 t) d t$
$=\frac{3 \pi}{8}$.
(b) Let S be the region enclosed by the curve C. Using the Green's theorem, we can compute the circulation as

$$
\begin{aligned}
\iint_{S}\left[\frac{\partial}{\partial x}\left(2 x^{3} y-3 x\right)-\frac{\partial}{\partial y}\left(3 x^{2} y^{2}+2 y\right)\right] d A & =\iint_{S}\left[\left(6 x^{2} y-3\right)-\left(6 x^{2} y+2\right)\right] d A \\
& =\iint_{S}(-5) d A \\
& =(-5) \times \text { Area of } S=-\frac{15 \pi}{8}
\end{aligned}
$$

(c) Using the Green's theorem, we can compute the flux as

$$
\begin{aligned}
\iint_{S}\left[\frac{\partial}{\partial x}(2 y \cos x+3 x)+\frac{\partial}{\partial y}\left(y^{2} \sin x+2 y\right)\right] d A & =\iint_{S}[(-2 y \sin x+3)+(2 y \sin x+2)] d A \\
& =\iint_{S} 5 d A=\frac{15 \pi}{8}
\end{aligned}
$$

Problem 5: (15 points) Find the moment of inertia of the thin spherical shell $x^{2}+y^{2}+z^{2}=a^{2}$ with respect to any diameter of it. The density of the shell is $\delta=1$.

Solution: Since it is a symmetric object, the moment of inertia is same for any diameter. Let us find the moment of inertia with respect to the z-axis.

$$
I_{z}=\iint_{S}\left(x^{2}+y^{2}\right) \delta d \sigma
$$

To find $d \sigma$, we notice that the equation of the spherical shell is $f(x, y, z)=0$, where $f(x, y, z)=x^{2}+y^{2}+$ $z^{2}-a^{2}$. Taking the projection onto the $x y$-plane,

$$
\begin{aligned}
d \sigma & =2 \frac{|\vec{\nabla} f|}{|\overrightarrow{\nabla f} \cdot \hat{k}|} d x d y \\
& =2 \frac{|2 x \hat{i}+2 y \hat{j}+2 z \hat{k}|}{|2 z|} d x d y \\
& =2 \frac{\sqrt{x^{2}+y^{2}+z^{2}}}{|z|} d x d y \\
& =\frac{2 a}{\sqrt{a^{2}-x^{2}-y^{2}}} d x d y
\end{aligned}
$$

We multiplied the above by 2 , because the projection of the lower hemisphere overlaps with the projection of the upper hemisphere. Since the projection of the hemisphere on the $x y$-plane is the circle $x^{2}+y^{2} \leq a^{2}$,

$$
\begin{aligned}
I_{z} & =\iint_{x^{2}+y^{2} \leq a^{2}}\left(x^{2}+y^{2}\right) \frac{2 a}{\sqrt{a^{2}-x^{2}-y^{2}}} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{a} r^{2} \frac{2 a}{\sqrt{a^{2}-r^{2}}} r d r d \theta \quad \text { (changing it to the polar coordinates) } \\
& =a \int_{0}^{2 \pi} \int_{0}^{a^{2}}\left(a^{2}-u\right) \frac{1}{\sqrt{u}} d u d \theta \quad \text { (substituting } a^{2}-r^{2}=u \text {) } \\
& =a \int_{0}^{2 \pi} \int_{0}^{a^{2}}\left(a^{2} u^{-1 / 2}-u^{1 / 2}\right) d u d \theta \\
& =a \int_{0}^{2 \pi} 2 a^{2} u^{1 / 2}-\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{a^{2}} d \theta \\
& =a \int_{0}^{2 \pi} \frac{4 a^{3}}{3} d \theta \\
& =\frac{8 \pi a^{4}}{3}
\end{aligned}
$$

Problem 6: (15 points) Consider the ellipsoidal shell $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, and let

$$
\vec{F}=\frac{y^{2} x}{b^{2}} \hat{i}+\frac{z^{2} y}{c^{2}} \hat{j}+\frac{x^{2} z}{a^{2}} \hat{k}
$$

where a, b, c are constants. Find the outward flux of \vec{F} across the surface of the ellipsoidal shell.

Solution: Since we have a closed surface, we can use the divergence theorem. Let us denote the ellipsoidal surface by S and the solid ellipsoid is E. The flux of the vector field across the ellipsoidal surface is

$$
\iint_{S} \vec{F} \cdot \hat{n} d \sigma=\iiint_{E} \vec{\nabla} \cdot \vec{F} d v
$$

Divergence of the vector field \vec{F} is

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{F} & =\frac{\partial}{\partial x}\left(\frac{y^{2} x}{b^{2}}\right)+\frac{\partial}{\partial y}\left(\frac{z^{2} y}{c^{2}}\right)+\frac{\partial}{\partial z}\left(\frac{x^{2} z}{z^{2}}\right) \\
& =\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}+\frac{x^{2}}{a^{2}}
\end{aligned}
$$

So the flux is

$$
\iiint_{E} \vec{\nabla} \cdot \vec{F} d v=\iiint_{E}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right) d x d y d z
$$

Let us substitute $x=a u, y=b v, z=c w$. Then the ellipsoid becomes a unit sphere $U S: \quad u^{2}+v^{2}+w^{2}=1$. And the jacobian of the transformation is

$$
\begin{aligned}
J & =\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\
\frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right| \\
& =a b c
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\iiint_{E}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right) d x d y d z= & a b c \iiint_{U S}\left(u^{2}+v^{2}+w^{2}\right) d u d v d w \\
= & a b c \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{2} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \quad \text { (changing it to } \\
& \text { the spherical coordinate system) } \\
= & \frac{a b c}{5} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta \\
= & \frac{a b c}{5} \int_{0}^{2 \pi}-\left.\cos \phi\right|_{0} ^{\pi} d \theta \\
= & \frac{a b c}{5} \int_{0}^{2 \pi} 2 d \theta \\
& =\frac{4 \pi a b c}{5}
\end{aligned}
$$

Extra Credit:(2 points)

The arrow shows the direction of motion of the minute hand. Is the minute hand rotating clockwise or counter-clockwise?

