Name: \qquad September 4, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no calculator, no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all eight pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem on the last page.

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins. When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1:(10 points) Evaluate the following integral

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

Solution:

Problem 2: (10 points) Find the mass of the solid spherical cap $x^{2}+y^{2}+z^{2} \leq 25, z \geq 3$ [which is obtained by cutting the solid sphere $x^{2}+y^{2}+z^{2} \leq 25$ by the plane $z=3$]. The desity of the cap is given by $\delta=1$.

Solution:

Problem 3:(15 points) Consider the following space curve

$$
\vec{r}(t)=\left(e^{t} \cos t\right) \hat{i}+\left(e^{t} \sin t\right) \hat{j}+\sqrt{2} e^{t} \hat{k} .
$$

(a) Find the curvature κ of above space curve at the point $t=0$.
(b) Find the tangential component a_{T} and the normal component a_{N} of acceleration at $t=0$.

Solution:

Problem 4:(15 points)

Consider the vector fields \vec{F}_{1}, \vec{F}_{2}, and the curve C given below

$$
\begin{aligned}
& \vec{F}_{1}=\left(3 x^{2} y^{2}+2 y\right) \hat{i}+\left(2 x^{3} y-3 x\right) \hat{j} \\
& \vec{F}_{2}=(2 y \cos x+3 x) \hat{i}+\left(y^{2} \sin x+2 y\right) \hat{j} \\
& C: \vec{r}(t)=\cos ^{3} t \hat{i}+\sin ^{3} t \hat{j}, \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

(a) Find the area of the region enclosed by the curve C.
(b) Find the counter-clockwise circulation of the vector field \vec{F}_{1} along the curve C.
(c) Find the outward flux of the vector field \vec{F}_{2} across the curve C.

Solution:

Figure 1: Graph of the curve C.

Problem 5: (15 points) Find the moment of inertia of the thin spherical shell $x^{2}+y^{2}+z^{2}=a^{2}$ with respect to any diameter of it. The density of the shell is $\delta=1$.

Solution:

Problem 6:(15 points) Consider the ellipsoidal shell $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, and let

$$
\vec{F}=\frac{y^{2} x}{b^{2}} \hat{i}+\frac{z^{2} y}{c^{2}} \hat{j}+\frac{x^{2} z}{a^{2}} \hat{k},
$$

where a, b, c are constants. Find the outward flux of \vec{F} across the surface of the ellipsoidal shell.

Solution:

Extra Credit:(2 points)

The arrow shows the direction of motion of the minute hand. Is the minute hand rotating clockwise or counter-clockwise?

