Name: \qquad August 25, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=$ max A4).

As soon as the exam starts:

- Take a quick breath to relax! If you have worked through all the homework problems then you will do fine!
- Check that you have all eight pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem on the last page.

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1: (10 points) Sketch the region of integration, and then evaluate the following integral

$$
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x
$$

Solution: Solution:

Using the picture and reversing the order of integration we have

$$
\begin{aligned}
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x & =\int_{0}^{1} \int_{0}^{3 y^{2}} e^{y^{3}} d x d y \\
& =\int_{0}^{1} 3 y^{2} e^{y^{3}} d y \\
& =\left.e^{y^{3}}\right|_{0} ^{1} \\
& =e-1
\end{aligned}
$$

Problem 2: (10 points) Evaluate the following integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y
$$

Solution:

Converting the integration into the polar coordinate system, we have

$$
\begin{aligned}
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y & =\int_{0}^{2 \pi} \int_{0}^{1} \frac{2}{\left(1+r^{2}\right)^{2}} r d r d \theta \\
& =\int_{0}^{1}\left[-\left.\frac{1}{\left(1+r^{2}\right)}\right|_{0} ^{1}\right] d \theta \\
& =\left[-\frac{1}{2}+1\right] 2 \pi \\
& =\pi
\end{aligned}
$$

Problem 3: (15 points) Consider the helix $\vec{r}(t)=(a \cos t) \hat{i}+(a \sin t) \hat{j}+b t \hat{k}, a, b>0$.
(a) Find the unit tangent vector \vec{T}, unit normal vector \vec{N}, and the curvature κ of this helix.
(b) What happens to κ when we take $a \rightarrow \infty$ or $b \rightarrow \infty$? What is the geometric reason behind this behaviour?

Solution:

(a) The equation of the space curve is given by

$$
\vec{r}(t)=(a \cos t) \hat{i}+(a \sin t) \hat{j}+b t \hat{k} .
$$

From this equation we can compute the following quantities.

$$
\begin{aligned}
\vec{v}(t) & =\frac{d \vec{r}}{d t}=(-a \sin t) \hat{i}+(a \cos t) \hat{j}+b \hat{k} \\
|\vec{v}(t)| & =\sqrt{(-a \sin t)^{2}+(a \cos t)^{2}+b^{2}}=\sqrt{a^{2}+b^{2}} \\
\vec{T} & =\frac{\vec{v}(t)}{|\vec{v}(t)|}=\frac{1}{\sqrt{a^{2}+b^{2}}}[(-a \sin t) \hat{i}+(a \cos t) \hat{j}+b \hat{k}] \\
\frac{d \vec{T}}{d t} & =\frac{1}{\sqrt{a^{2}+b^{2}}}[(-a \cos t) \hat{i}+(-a \sin t) \hat{j}] \\
\left|\frac{d \vec{T}}{d t}\right| & =\frac{a}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

$$
\vec{N}=\frac{d \vec{T} / d t}{|d \vec{T} / d t|}=-\cos t \hat{i}-\sin t \hat{j}
$$

Figure 1: The blue line indicates the graph of the helix.

$$
\kappa=\frac{|d \vec{T} / d t|}{|\vec{v}(t)|}=\frac{a}{a^{2}+b^{2}}
$$

(b) From the expression of κ, we notice that

$$
\lim _{a \rightarrow \infty} \kappa=0=\lim _{b \rightarrow \infty} \kappa .
$$

When we increase a, the radius of the helix gets bigger. Therefore as $a \rightarrow \infty$, locally it looks like a line. Since the curvature of a line is zero, κ becomes zero.

When we increase b, the helix is being stretched out vertically. Therefore as $b \rightarrow \infty$, it becomes a line, and consequently the curvature κ becomes zero.

Problem 4:(15 points)
(a) Find the mass of the thick spherical shell $\left(S_{1}\right)$ which is trapped inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the sphere $x^{2}+y^{2}+z^{2}=4$. Density of the shell is given by $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.
(b) Find the mass of another solid sphere $\left(S_{2}\right) x^{2}+y^{2}+z^{2}=9$, whose density is given by $\delta(x, y, z)=$ $\frac{1}{45}\left(3^{5}-2^{5}\right)=\frac{211}{45}$.
(c) Which one of S_{1} and S_{2} has the higher moment of inertia with respect to their diameters? Explain your answer.

Solution:

(a) Mass of the thick spherical shell S_{1} is

$$
\begin{aligned}
M_{1} & =\iiint_{S_{1}} \delta(x, y, z) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{3} \rho^{2} \times \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{1}{5}\left(3^{5}-2^{5}\right) \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta \\
& =\frac{1}{5}\left(3^{5}-2^{5}\right) \int_{0}^{2 \pi}\left[-\left.\cos \phi\right|_{0} ^{\pi}\right] d \theta \\
& =\frac{1}{5}\left(3^{5}-2^{5}\right) \times 2 \times 2 \pi=\frac{4 \pi}{5}\left(3^{5}-2^{5}\right)
\end{aligned}
$$

(b) Since the density of this sphere S_{2} is constant, mass of this sphere can easily be computed by

$$
\begin{aligned}
M_{2} & =\text { volume } \times \text { density } \\
& =\frac{4 \pi}{3} \times 3^{3} \times \frac{1}{45}\left(3^{5}-2^{5}\right) \\
& =\frac{4 \pi}{5}\left(3^{5}-2^{5}\right)
\end{aligned}
$$

Figure 2: Picture of the thick Shell S_{1}.
(c) We notice that mass and the ra-
dius of both of the spheres are the same. However, since the density is constant for S_{2}, the mass is uniformly distributed over S_{2}. Whereas the density of the first sphere S_{1} is increasing towards the outer shell, and there is no mass in the hollow part $x^{2}+y^{2}+z^{2} \leq 4$. So, overall the mass of the first sphere is distributed away from the origin. Consequently, S_{1} will have higher moment of inertia with respect to it's diameter than S_{2}.

Problem 5: (15 points) In a stormy weather, a fly is trying to reach it's home which is located at $(1, \pi / 2,0)$ from it's current location $(1,0,1)$. If the effective wind force on the fly is given by

$$
\vec{F}(x, y, z)=e^{y z} \hat{i}+\left(x z e^{y z}+z \cos y\right) \hat{j}+\left(x y e^{y z}+\sin y\right) \hat{k},
$$

and the fly takes the path shown below, find the work done by the fly to reach it's home.

[Hint: Is \vec{F} a conservative force field?]

Solution: Let us check whether the vector field is conservative or not.

$$
\begin{aligned}
\vec{\nabla} \times \vec{F}= & \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{y z} & x z e^{y z}+z \cos y & x y e^{y z}+\sin y
\end{array}\right| \\
= & {\left[\frac{\partial}{\partial y}\left(x y e^{y z}+\sin y\right)-\frac{\partial}{\partial z}\left(x z e^{y z}+z \cos y\right)\right] \hat{i}+\left[\frac{\partial}{\partial z}\left(e^{y z}\right)-\frac{\partial}{\partial x}\left(x y e^{y z}+\sin y\right)\right] \hat{j} } \\
& +\left[\frac{\partial}{\partial x}\left(x z e^{y z}+z \cos y\right)-\frac{\partial}{\partial y}\left(e^{y z}\right)\right] \hat{k} \\
= & {\left[\left(x e^{y z}+x y z e^{y z}+\cos y\right)-\left(x e^{y z}+x y z e^{y z}+\cos y\right)\right] \hat{i}+\left[y e^{y z}-y e^{y z}\right] \hat{j} } \\
& +\left[z e^{y z}-z e^{y z}\right] \hat{k} \\
= & \overrightarrow{0} .
\end{aligned}
$$

Therefore the vector field \vec{F} is conservative. Consequently, the work done by the fly does not depend on the path of travel. It depends only on the initial and the final point. Since \vec{F} is conservative, there exists a potential function f such that $\vec{F}=\vec{\nabla} f$ and the work done by the fly is

$$
f(1, \pi / 2,0)-f(1,0,1)
$$

To find the the potential function f,

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=e^{y z} & \Rightarrow f(x, y, z)=x e^{y z}+C_{1}(y, z) \\
\frac{\partial f}{\partial y}=x z e^{y z}+z \cos y & \Rightarrow f(x, y, z)=x e^{y z}+z \sin y+C_{2}(x, z) \\
\frac{\partial f}{\partial z}=x y e^{y z}+\sin y & \Rightarrow f(x, y, x)=x e^{y z}+z \sin y+C_{3}(x, y)
\end{array}
$$

From the above three equations, we conclude that $f(x, y, z)=x e^{y z}+z \sin y+C$. Therefore the work done by the fly is

$$
f(1, \pi / 2,0)-f(1,0,1)=\left(e^{0}+0 \sin \pi / 2\right)-\left(e^{0}+\sin 0\right)=0
$$

Problem 6: (15 points) Consider the 'truncated horizontal ice-cream cone' which is trapped inside the sphere $x^{2}+y^{2}+z^{2}=4$, outside the sphere $x^{2}+y^{2}+z^{2}=1$ and inside the cone $x=\sqrt{y^{2}+z^{2}}$. Density of the solid is given by $\delta(x, y, z)=1 /\left(x^{2}+y^{2}+z^{2}\right)$. Find the centroid of this solid.

Solution:

Figure 3: Picture of the solid. The red dot indicates the possible position of the centroid.

Since the solid and the density are symmetric with respect to the x-axis. Therefore the centroid must lie on the x-axis. In other words the centroid has the form $(\bar{x}, 0,0)$.

Mass of the solid is given by $M=\iiint \delta(x, y, z) d V$. Since the solid is symmetric with respect to x-axis, and it is spherically symmetric, it is convenient to use the spherical coordinate system by taking x-axis as the $\phi=0$ line, $y z$-plane as the plane of θ, and y-axis as the $\theta=0$ line. In this coordinate system, we have

$$
\begin{aligned}
x & =\rho \cos \phi \\
y & =\rho \sin \phi \cos \theta \\
z & =\rho \sin \phi \sin \theta .
\end{aligned}
$$

Then mass of the solid is given by

$$
\begin{aligned}
M & =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{2} \frac{1}{\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi}\left[-\left.\cos \phi\right|_{0} ^{\pi / 4}\right] d \theta=2 \pi\left[1-\frac{\sqrt{2}}{2}\right]
\end{aligned}
$$

The moment of the solid with respect to the $y z$-plane is given by

$$
\begin{aligned}
M_{y z} & =\iiint x \delta(x, y, z) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{2} \rho \cos \phi \frac{1}{\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left[\left.\frac{1}{2} \rho^{2}\right|_{1} ^{2}\right] \cos \phi \sin \phi d \phi d \theta \\
& =\frac{3}{2} \int_{0}^{2 \pi}\left[\left.\frac{1}{2} \sin ^{2} \phi\right|_{0} ^{\pi / 4}\right] d \theta \\
& =\frac{3}{2} \times \frac{1}{2}\left(\frac{\sqrt{2}}{2}\right)^{2} \times 2 \pi=\frac{3 \pi}{4} .
\end{aligned}
$$

Therefore the x coordinate of the centroid of this solid is

$$
\bar{x}=\frac{M_{y z}}{M}=\frac{3 \pi / 4}{2 \pi[1-\sqrt{2} / 2]}=\frac{3}{8\left[1-\frac{\sqrt{2}}{2}\right]} .
$$

Consequently, the centroid is

$$
\left(\frac{3}{8\left[1-\frac{\sqrt{2}}{2}\right]}, 0,0\right)
$$

