
MAT 21D Max time: 1 hr 20 mins Final

Name: September 8, 2016

Before the exam begins:

• Write your name above.

• Turn off all electronics and keep them out of sight: no calculator, no cellular phones, iPods, wearing
of headphones, not even to tell time (and not even if it’s just in airplane mode).

• You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page = max A4).

As soon as the exam starts:

• Take a quick breath to relax! If you have truly worked through all the homework problems then you
will do fine!

• Check that you have all eight pages of the exam. (The number of pages includes this cover page.)

• There is an extra credit problem on the last page.

During the exam:

• Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins. When you are told to stop, you must stop IMMEDI-
ATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem 1 2 3 4 5 6 Total

Score
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Problem 1:(10 points) Change the following Cartesian integral to an equivalent polar form. Then evaluate
the integral

ˆ 0

−1

ˆ 0

−
√
1−x2

1

1 +
√
x2 + y2

dy dx.

Solution:

xθ = π

y

θ = 3π/2

y = −
√

1− x2

(−1, 0)

(0,−1)

From the picture, we see that we can convert the integral to polar form as follows

ˆ 0

−1

ˆ 0

−
√
1−x2

1

1 +
√
x2 + y2

dy dx =

ˆ 3π/2

π

ˆ 1

0

r dr dθ

1 + r

=

ˆ 3π/2

π

ˆ 1

0

(1 + r)− 1

1 + r
dr dθ

=

ˆ 3π/2

π

ˆ 1

0

[
1− 1

1 + r

]
dr dθ

=

ˆ 3π/2

π

[
r − ln(1 + r)|10

]
dθ

= (1− ln 2)π/2.

2



Problem 2: (10 points) Consider the solid cone z = 2
√
x2 + y2 which is bounded above by the plane z = 2.

Density of the cone is given by δ(x, y, z) = z. Find the centroid of this cone.

Solution:

x

y

z

z = 2
√
x2 + y2 = 2r

z = 2

Note that the top of the cone is located on the
z = 2 plane, and it is the circle 2 = 2

√
x2 + y2 i.e.,

x2 + y2 = 1.
We observe that the cone and the density of the

cone is symmetric with respect to z axis. Therefore
the centroid must lie on z-axis. In other words, the
centroid is of the form (0, 0, z̄).

Using the cylindrical coordinate system, we can
find the mass of the cone as

M =

ˆ 2π

0

ˆ 1

0

ˆ 2

2r

z dz r dr dθ

=

ˆ 2π

0

ˆ 1

0

[
1

2
z2
∣∣∣∣2
2r

]
r dr dθ

=

ˆ 2π

0

ˆ 1

0

(2− 2r2)r dr dθ

=

ˆ 2π

0

[
r2 − 2

4
r4
∣∣∣∣1
0

]
dθ

= 2π × (1− 1/2) = π.

Moment of the cone with respect to the xy-plane is

Mxy =

ˆ 2π

0

ˆ 1

0

ˆ 2

2r

z × z dz r dr dθ

=

ˆ 2π

0

ˆ 1

0

[
z3

3

∣∣∣∣2
2r

]
r dr dθ

=
8

3

ˆ 2π

0

ˆ 1

0

(1− r3)r dr dθ

=
8

3

ˆ 2π

0

[
r2

2
− r5

5

∣∣∣∣1
0

]
dθ

=
8

3
× (1/2− 1/5)× 2π

=
8

3
× 3

10
× 2π =

8π

5
.

Therefore

z̄ =
Mxy

M
=

8π/5

π
=

8

5
.

So the centroid of the cone is (0, 0, 8/5)
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Problem 3:(15 points) Suppose a particle is moving along the following parabola

~r(t) = t î+ t2 ĵ, −∞ < t <∞.

(a) Find the normal component of acceleration aN of the particle.

* [Notice that aN is a function of t.]

(b) Show that aN is maximized at the vertex of the parabola.

Solution: (a) Differentiating the equation of the curve with respect to t, we have

~v(t) = î+ 2t ĵ

~a(t) =
d~v

dt
= 2 ĵ

|~v(t)| =
√

1 + 4t2.

Therefore the tangential component is given by

aT (t) =
d

dt
|~v(t)|

=
4t√

1 + 4t2
.

Consequently, the normal component is given by

aN (t) =
√
|~a|2 − aT (t)2

=

√
4− 16t2

1 + 4t2

=
2√

1 + 4t2
.

(b) We know that 1+4t2 is an increasing function of |t|, and it is minimum at t = 0. From the expression
of aN (t), we notice that aN (t) is a decreasing function of |t|, and it takes the maximum value at t = 0.
Maximum value of aN (t) is aN (0) = 1.

But t = 0 corresponds to the point (0, 0) on ~r(t), which is the vertex of the parabola.
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Problem 4:(15 points) Consider the surface of the parabolic shell z = 2− x2 − y2, z ≥ 0. Let the density
of this surface is δ = 1. Find the moment of inertia of this parabolic shell with respect to the z-axis.

Solution:

x

y

z

(0, 0, 2)

x2 + y2 = 2

Let us call the surface S. Moment of inertia of
the surface with respect to the z axis is

Iz =

¨
S

(x2 + y2) δ dσ.

In our case δ = 1. Equation of the surface is
f(x, y, z) = x2 + y2 + z − 2 = 0. From the graph,
we see that the parabolic shell S is located on top of
the xy-plane. It is convenient to take the shadow of
S on the xy planes (shadows taken on other planes
will have overlapping). Notice that the shadow of S
on the xy-plane is the disk x2 + y2 ≤ 2. Let us call
the shadow R. Then

Iz =

¨
S

(x2 + y2) δ dσ

=

¨
R

(x2 + y2)
|~∇f |
|~∇f · k̂|

dA

=

¨
R

(x2 + y2)
|2x î+ 2y ĵ + k̂|

|k̂ · k̂|
dA

=

¨
R

(x2 + y2)
√

4(x2 + y2) + 1 dA

=

ˆ 2π

0

ˆ √2

0

r2
√

1 + 4r2 r dr dθ (changing it to polar coordinates)

=

ˆ 2π

0

ˆ 9

1

u− 1

4

√
u

1

8
du dθ (substitution: 1 + 4r2 = u)

=
1

32

ˆ 2π

0

ˆ 9

1

(u3/2 −
√
u) du dθ

=
1

32

ˆ 2π

0

[
2

5
u5/2 − 2

3
u3/2

∣∣∣∣9
1

]
dθ

=
π

16

[
2

5
× 35 − 2

3
× 33 − 2

5
+

2

3

]
.
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Problem 5:(15 points)

x

y

(1,0)

(0,1)

Figure 1: Graph of the curve C.

Consider the vector fields ~F1, ~F2, and the curve
C given below

~F1 = (3x2y2 + 2y) î+ (2x3y − 3x) ĵ,

~F2 = (2y cosx+ 3x) î+ (y2 sinx+ 2y) ĵ,

C : ~r(t) = cos3 t î+ sin3 t ĵ, 0 ≤ t ≤ 2π

(a) Find the area of the region enclosed by the curve
C.

(b) Find the counter-clockwise circulation of the

vector field ~F1 along the curve C.

(c) Find the outward flux of the vector field ~F2

across the curve C.

Solution: (a) From Green’s theorem, we know that
the area enclosed by a curve ~r(t) = x(t) î+ y(t) t̂ is
given by 1

2

¸
(x dy − y dx). Therefore, in our case

Area =
1

2

ˆ 2π

0

[
(cos3 t)(3 sin2 t cos t)− (sin3 t)(−3 cos2 t sin t)

]
dt

=
3

2

ˆ 2π

0

[
cos4 t sin2 t+ sin4 t cos2 t

]
dt

=
3

2

ˆ 2π

0

cos2 t sin2 t dt

=
3

8

ˆ 2π

0

sin2 2t dt

=
3

16

ˆ 2π

0

(1− cos 4t) dt

=
3π

8
.

(b) Let S be the region enclosed by the curve C.
Using the Green’s theorem, we can compute the circulation asˆ ˆ

S

[
∂

∂x
(2x3y − 3x)− ∂

∂y
(3x2y2 + 2y)

]
dA =

ˆ ˆ
S

[(6x2y − 3)− (6x2y + 2)] dA

=

ˆ ˆ
S

(−5) dA

= (−5)×Area of S = −15π

8
.

(c) Using the Green’s theorem, we can compute the flux asˆ ˆ
S

[
∂

∂x
(2y cosx+ 3x) +

∂

∂y
(y2 sinx+ 2y)

]
dA =

ˆ ˆ
S

[(−2y sinx+ 3) + (2y sinx+ 2)] dA

=

ˆ ˆ
S

5 dA =
15π

8
.

6



Problem 6:(15 points) Find the outward flux of the vector field ~F = (5x3 + 12xy2) î + (y3 + ey sin z) ĵ +

(5z3 + ey cos z) k̂ across the surface of the thick sphere 1 ≤ x2 + y2 + z2 ≤ 4.

Solution: Let us call the thick sphere as D. The surface of D consists of two spherical shells, namely
x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4. Let us call the surface as S. We know that the outward flux of ~F
through S is given by

‚
S

(~F · n̂) dσ, where n̂ is the outward unit normal vector to the surface S.
But using the Divergence theorem, we have

‹
S

(~F · n̂) dσ =

˚
D

(~∇ · ~F ) dV.

Divergence of the vector field ~F is given by

~∇ · ~F =
∂

∂x
(5x3 + 12xy2) +

∂

∂y
(y3 + ey sin z) +

∂

∂z
(5z3 + ey cos z)

= (15x2 + 12y2) + (3y2 + ey sin z) + (15z2 − ey sin z)

= 15(x2 + y2 + z2).

Therefore˚
D

(~∇ · ~F ) dV =

˚
D

15(x2 + y2 + z2) dV

= 15

ˆ 2π

0

ˆ π

0

ˆ 2

1

ρ2 × ρ2 sinφ dρ dφ dθ (Changing to spherical coordinates)

= 15

ˆ 2π

0

ˆ π

0

[
1

5
ρ5
∣∣∣∣2
1

]
sinφ dφ dθ

= (3× [25 − 1])

ˆ 2π

0

[− cosφ|π0 ] dθ

= 93× 2

ˆ 2π

0

dθ

= 93× 4π.

As a result, outward flux of ~F across S is 93× 4π.
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Extra Credit:(2 points) Let ~F = M î+N ĵ be a conservative vector field. What is the total circulation

of ~F along the following curves.

Answer: Since the vector field ~F is conservative, and the curves are simple closed curves, total circulation
of ~F along the smiley is zero.
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