MAT 21D Max time: 1 hr 20 mins Final

Name: September 8, 2016

Before the exam begins:
e Write your name above.

e Turn off all electronics and keep them out of sight: no calculator, no cellular phones, iPods, wearing
of headphones, not even to tell time (and not even if it’s just in airplane mode).

e You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page = max A4).
As soon as the exam starts:

e Take a quick breath to relax! If you have truly worked through all the homework problems then you
will do fine!

e Check that you have all eight pages of the exam. (The number of pages includes this cover page.)

e There is an extra credit problem on the last page.

During the exam:
e Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins. When you are told to stop, you must stop IMMEDI-
ATELY. This is in fairness to all students. Do not think that you are the exception to this rule.
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Problem 1:(10 points) Change the following Cartesian integral to an equivalent polar form. Then evaluate

the integral
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From the picture, we see that we can convert the integral to polar form as follows
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Problem 2: (10 points) Consider the solid cone z = 24/x2 + y2 which is bounded above by the plane z = 2.
Density of the cone is given by §(z,y, z) = z. Find the centroid of this cone.

Solution:

Note that the top of the cone is located on the
z = 2 plane, and it is the circle 2 = 24/22 + 32 i.e., P
224+ y?=1.

We observe that the cone and the density of the
cone is symmetric with respect to z axis. Therefore
the centroid must lie on z-axis. In other words, the
centroid is of the form (0,0, z).

Using the cylindrical coordinate system, we can
find the mass of the cone as
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Moment of the cone with respect to the xy-plane is
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Therefore

So the centroid of the cone is (0,0,8/5)



Problem 3:(15 points) Suppose a particle is moving along the following parabola
Ft)=ti+t?j, —oo<t< oo
(a) Find the normal component of acceleration apy of the particle.
* [Notice that ay is a function of t.]

(b) Show that ax is maximized at the vertex of the parabola.

Solution: (a) Differentiating the equation of the curve with respect to ¢, we have
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Therefore the tangential component is given by

ar(t) = [o(t)]

Consequently, the normal component is given by
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(b) We know that 1+ 4¢2 is an increasing function of |¢|, and it is minimum at ¢t = 0. From the expression
of an(t), we notice that an(t) is a decreasing function of ||, and it takes the maximum value at ¢t = 0.
Maximum value of ay(t) is an(0) = 1.

But ¢ = 0 corresponds to the point (0,0) on 7(t), which is the vertex of the parabola.



Problem 4:(15 points) Consider the surface of the parabolic shell z = 2 — 22 — 32, z > 0. Let the density
of this surface is 6 = 1. Find the moment of inertia of this parabolic shell with respect to the z-axis.

Solution:

Let us call the surface S. Moment of inertia of
the surface with respect to the z axis is

I, = //S(m2+y2)6da.

In our case § = 1.

Equation of the surface is

flx,y,2) = 22 + y?> + 2 — 2 = 0. From the graph,
we see that the parabolic shell S is located on top of
the zy-plane. It is convenient to take the shadow of
S on the zy planes (shadows taken on other planes
will have overlapping). Notice that the shadow of S
on the zy-plane is the disk 22 + y? < 2. Let us call

the shadow R. Then
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(changing it to polar coordinates)
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Problem 5:(15 points)
Consider the vector fields Fi, F5, and the curve

C given below Y
ﬁl = (3x2y2 + 2y) i+ (2x3y - 3z) j’
Fy = (2ycosz +3x) i + (y*sinz + 2y) j, (0,1)

C: 7t)=cos®ti+sin®t), 0<t<2r
(a) Find the area of the region enclosed by the curve

C.

(b) Find the counter-clockwise circulation of the x
vector field F; along the curve C.

(¢) Find the outward flux of the vector field F
across the curve C.

Solution: (a) From Green’s theorem, we know that
the area enclosed by a curve 7(t) = z(t) i + y(t) £ is
given by 1 ¢(x dy — y dx). Therefore, in our case
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(b) Let S be the region enclosed by the curve C.
Using the Green’s theorem, we can compute the circulation as
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(c) Using the Green’s theorem, we can compute the flux as
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Problem 6:(15 points) Find the outward flux of the vector field F = (523 + 12212) i + (% + ¢¥sinz) j +
(523 + €Y cos 2) k across the surface of the thick sphere 1 < 22 + y% + 22 < 4.

Solution: Let us call the thick sphere as D. The surface of D consists of two spherical shells, namely
22+ 92+ 22 =1 and 22 + y% + 22 = 4. Let us call the surface as S. We know that the outward flux of F
through S is given by g';ﬁs(ﬁ - 1) do, where 7 is the outward unit normal vector to the surface S.

But using the Divergence theorem, we have
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Divergence of the vector field Fis given by

- o 0 0 0
V-F = ——(52°+1229°) + — (y* + ¢¥si + (52 + v
x(Sx xy”) y(y e sin z) Z(5z eY cos z)

= (1527 + 12¢°%) + (3y* + e¥sin 2) + (1522 — e¥sin 2)
15(x? + y2 + 22).

Therefore

///D(ﬁﬁ)dv = ﬂ)15(12+y2+22)dv

2m ™ 2
= 15/ / / p* x p*sing dp dp df (Changing to spherical coordinates)
o Jo J1

27 ki 2
1
= 15/ / —p°
0 0 l5 1

27
= (3x[2°— 1])/0 [—cos@ly] db

2m

= 93 x2 do
0
= 93 x 4m.

] sin ¢ d¢ df

As a result, outward flux of F across S is 93 x 4.



Extra Credit:(2 points) Let F=Mi+N 7 be a conservative vector field. What is the total circulation
of F' along the following curves.

Answer: Since the vector field F is conservative, and the curves are simple closed curves, total circulation
of F' along the smiley is zero.



