Name: \qquad September 8, 2016

Before the exam begins:

- Write your name above.
- Turn off all electronics and keep them out of sight: no calculator, no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).
- You may bring hand written notes ONLY ON ONE SIDE of a half page (where full page $=\max \mathrm{A} 4$).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- Check that you have all eight pages of the exam. (The number of pages includes this cover page.)
- There is an extra credit problem on the last page.

During the exam:

- Keep your eyes on your own exam!

Note that the exam length is exactly 1 hr 20 mins . When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Problem 1: (10 points) Change the following Cartesian integral to an equivalent polar form. Then evaluate the integral

$$
\int_{-1}^{0} \int_{-\sqrt{1-x^{2}}}^{0} \frac{1}{1+\sqrt{x^{2}+y^{2}}} d y d x
$$

Solution:

From the picture, we see that we can convert the integral to polar form as follows

$$
\begin{aligned}
\int_{-1}^{0} \int_{-\sqrt{1-x^{2}}}^{0} \frac{1}{1+\sqrt{x^{2}+y^{2}}} d y d x & =\int_{\pi}^{3 \pi / 2} \int_{0}^{1} \frac{r d r d \theta}{1+r} \\
& =\int_{\pi}^{3 \pi / 2} \int_{0}^{1} \frac{(1+r)-1}{1+r} d r d \theta \\
& =\int_{\pi}^{3 \pi / 2} \int_{0}^{1}\left[1-\frac{1}{1+r}\right] d r d \theta \\
& =\int_{\pi}^{3 \pi / 2}\left[r-\left.\ln (1+r)\right|_{0} ^{1}\right] d \theta \\
& =(1-\ln 2) \pi / 2
\end{aligned}
$$

Problem 2: (10 points) Consider the solid cone $z=2 \sqrt{x^{2}+y^{2}}$ which is bounded above by the plane $z=2$. Density of the cone is given by $\delta(x, y, z)=z$. Find the centroid of this cone.

Solution:

Note that the top of the cone is located on the $z=2$ plane, and it is the circle $2=2 \sqrt{x^{2}+y^{2}}$ i.e., $x^{2}+y^{2}=1$.

We observe that the cone and the density of the cone is symmetric with respect to z axis. Therefore the centroid must lie on z-axis. In other words, the centroid is of the form $(0,0, \bar{z})$.

Using the cylindrical coordinate system, we can find the mass of the cone as

$$
\begin{aligned}
M & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{2 r}^{2} z d z r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left[\left.\frac{1}{2} z^{2}\right|_{2 r} ^{2}\right] r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(2-2 r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[r^{2}-\left.\frac{2}{4} r^{4}\right|_{0} ^{1}\right] d \theta \\
& =2 \pi \times(1-1 / 2)=\pi
\end{aligned}
$$

Moment of the cone with respect to the $x y$-plane is

$$
\begin{aligned}
M_{x y} & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{2 r}^{2} z \times z d z r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left[\left.\frac{z^{3}}{3}\right|_{2 r} ^{2}\right] r d r d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{3}\right) r d r d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi}\left[\frac{r^{2}}{2}-\left.\frac{r^{5}}{5}\right|_{0} ^{1}\right] d \theta \\
& =\frac{8}{3} \times(1 / 2-1 / 5) \times 2 \pi \\
& =\frac{8}{3} \times \frac{3}{10} \times 2 \pi=\frac{8 \pi}{5}
\end{aligned}
$$

Therefore

$$
\bar{z}=\frac{M_{x y}}{M}=\frac{8 \pi / 5}{\pi}=\frac{8}{5} .
$$

So the centroid of the cone is $(0,0,8 / 5)$

Problem 3:(15 points) Suppose a particle is moving along the following parabola

$$
\vec{r}(t)=t \hat{i}+t^{2} \hat{j}, \quad-\infty<t<\infty .
$$

(a) Find the normal component of acceleration a_{N} of the particle.

* [Notice that a_{N} is a function of t.]
(b) Show that a_{N} is maximized at the vertex of the parabola.

Solution: (a) Differentiating the equation of the curve with respect to t, we have

$$
\begin{aligned}
\vec{v}(t) & =\hat{i}+2 t \hat{j} \\
\vec{a}(t) & =\frac{d \vec{v}}{d t}=2 \hat{j} \\
|\vec{v}(t)| & =\sqrt{1+4 t^{2}}
\end{aligned}
$$

Therefore the tangential component is given by

$$
\begin{aligned}
a_{T}(t) & =\frac{d}{d t}|\vec{v}(t)| \\
& =\frac{4 t}{\sqrt{1+4 t^{2}}}
\end{aligned}
$$

Consequently, the normal component is given by

$$
\begin{aligned}
a_{N}(t) & =\sqrt{|\vec{a}|^{2}-a_{T}(t)^{2}} \\
& =\sqrt{4-\frac{16 t^{2}}{1+4 t^{2}}} \\
& =\frac{2}{\sqrt{1+4 t^{2}}}
\end{aligned}
$$

(b) We know that $1+4 t^{2}$ is an increasing function of $|t|$, and it is minimum at $t=0$. From the expression of $a_{N}(t)$, we notice that $a_{N}(t)$ is a decreasing function of $|t|$, and it takes the maximum value at $t=0$. Maximum value of $a_{N}(t)$ is $a_{N}(0)=1$.

But $t=0$ corresponds to the point $(0,0)$ on $\vec{r}(t)$, which is the vertex of the parabola.

Problem 4: (15 points) Consider the surface of the parabolic shell $z=2-x^{2}-y^{2}, z \geq 0$. Let the density of this surface is $\delta=1$. Find the moment of inertia of this parabolic shell with respect to the z-axis.

Solution:

Let us call the surface S. Moment of inertia of the surface with respect to the z axis is

$$
I_{z}=\iint_{S}\left(x^{2}+y^{2}\right) \delta d \sigma
$$

In our case $\delta=1$. Equation of the surface is $f(x, y, z)=x^{2}+y^{2}+z-2=0$. From the graph, we see that the parabolic shell S is located on top of the $x y$-plane. It is convenient to take the shadow of S on the $x y$ planes (shadows taken on other planes will have overlapping). Notice that the shadow of S on the $x y$-plane is the disk $x^{2}+y^{2} \leq 2$. Let us call the shadow R. Then

$$
\begin{aligned}
I_{z} & =\iint_{S}\left(x^{2}+y^{2}\right) \delta d \sigma \\
& =\iint_{R}\left(x^{2}+y^{2}\right) \frac{|\vec{\nabla} f|}{|\vec{\nabla} f \cdot \hat{k}|} d A \\
& =\iint_{R}\left(x^{2}+y^{2}\right) \frac{|2 x \hat{i}+2 y \hat{j}+\hat{k}|}{|\hat{k} \cdot \hat{k}|} d A \\
& =\iint_{R}\left(x^{2}+y^{2}\right) \sqrt{4\left(x^{2}+y^{2}\right)+1} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} r^{2} \sqrt{1+4 r^{2}} r d r d \theta \quad \text { (changing it to polar coordinates) } \\
& =\int_{0}^{2 \pi} \int_{1}^{9} \frac{u-1}{4} \sqrt{u} \frac{1}{8} d u d \theta \quad\left(\text { substitution: } 1+4 r^{2}=u\right) \\
& =\frac{1}{32} \int_{0}^{2 \pi} \int_{0}^{9}\left[\frac{2}{5} u^{5 / 2}-\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{9}\right] d \theta \\
& =\frac{\pi}{16}\left[\frac{2}{5} \times 3^{5}-\frac{2}{3} \times 3^{3}-\frac{2}{5}+\frac{2}{3}\right] .
\end{aligned}
$$

Problem 5:(15 points)
Consider the vector fields \vec{F}_{1}, \vec{F}_{2}, and the curve C given below

$$
\begin{aligned}
& \vec{F}_{1}=\left(3 x^{2} y^{2}+2 y\right) \hat{i}+\left(2 x^{3} y-3 x\right) \hat{j} \\
& \vec{F}_{2}=(2 y \cos x+3 x) \hat{i}+\left(y^{2} \sin x+2 y\right) \hat{j} \\
& C: \vec{r}(t)=\cos ^{3} t \hat{i}+\sin ^{3} t \hat{j}, \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

(a) Find the area of the region enclosed by the curve C.
(b) Find the counter-clockwise circulation of the vector field \vec{F}_{1} along the curve C.
(c) Find the outward flux of the vector field \vec{F}_{2} across the curve C.
Solution: (a) From Green's theorem, we know that the area enclosed by a curve $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{t}$ is given by $\frac{1}{2} \oint(x d y-y d x)$. Therefore, in our case
 Area $=\frac{1}{2} \int_{0}^{2 \pi}\left[\left(\cos ^{3} t\right)\left(3 \sin ^{2} t \cos t\right)-\left(\sin ^{3} t\right)\left(-3 \cos ^{2} t \sin t\right)\right]$ Figure 1: Graph of the curve C.
$=\frac{3}{2} \int_{0}^{2 \pi}\left[\cos ^{4} t \sin ^{2} t+\sin ^{4} t \cos ^{2} t\right] d t$
$=\frac{3}{2} \int_{0}^{2 \pi} \cos ^{2} t \sin ^{2} t d t$
$=\frac{3}{8} \int_{0}^{2 \pi} \sin ^{2} 2 t d t$
$=\frac{3}{16} \int_{0}^{2 \pi}(1-\cos 4 t) d t$
$=\frac{3 \pi}{8}$.
(b) Let S be the region enclosed by the curve C.

Using the Green's theorem, we can compute the circulation as

$$
\begin{aligned}
\iint_{S}\left[\frac{\partial}{\partial x}\left(2 x^{3} y-3 x\right)-\frac{\partial}{\partial y}\left(3 x^{2} y^{2}+2 y\right)\right] d A & =\iint_{S}\left[\left(6 x^{2} y-3\right)-\left(6 x^{2} y+2\right)\right] d A \\
& =\iint_{S}(-5) d A \\
& =(-5) \times \text { Area of } S=-\frac{15 \pi}{8}
\end{aligned}
$$

(c) Using the Green's theorem, we can compute the flux as

$$
\begin{aligned}
\iint_{S}\left[\frac{\partial}{\partial x}(2 y \cos x+3 x)+\frac{\partial}{\partial y}\left(y^{2} \sin x+2 y\right)\right] d A & =\iint_{S}[(-2 y \sin x+3)+(2 y \sin x+2)] d A \\
& =\iint_{S} 5 d A=\frac{15 \pi}{8}
\end{aligned}
$$

Problem 6: (15 points) Find the outward flux of the vector field $\vec{F}=\left(5 x^{3}+12 x y^{2}\right) \hat{i}+\left(y^{3}+e^{y} \sin z\right) \hat{j}+$ $\left(5 z^{3}+e^{y} \cos z\right) \hat{k}$ across the surface of the thick sphere $1 \leq x^{2}+y^{2}+z^{2} \leq 4$.

Solution: Let us call the thick sphere as D. The surface of D consists of two spherical shells, namely $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$. Let us call the surface as S. We know that the outward flux of \vec{F} through S is given by $\oiint_{S}(\vec{F} \cdot \hat{n}) d \sigma$, where \hat{n} is the outward unit normal vector to the surface S.

But using the Divergence theorem, we have

$$
\oiint_{S}(\vec{F} \cdot \hat{n}) d \sigma=\iiint_{D}(\vec{\nabla} \cdot \vec{F}) d V
$$

Divergence of the vector field \vec{F} is given by

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{F} & =\frac{\partial}{\partial x}\left(5 x^{3}+12 x y^{2}\right)+\frac{\partial}{\partial y}\left(y^{3}+e^{y} \sin z\right)+\frac{\partial}{\partial z}\left(5 z^{3}+e^{y} \cos z\right) \\
& =\left(15 x^{2}+12 y^{2}\right)+\left(3 y^{2}+e^{y} \sin z\right)+\left(15 z^{2}-e^{y} \sin z\right) \\
& =15\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\iiint_{D}(\vec{\nabla} \cdot \vec{F}) d V & =\iiint_{D} 15\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =15 \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{2} \rho^{2} \times \rho^{2} \sin \phi d \rho d \phi d \theta \quad \text { (Changing to spherical coordinates) } \\
& =15 \int_{0}^{2 \pi} \int_{0}^{\pi}\left[\left.\frac{1}{5} \rho^{5}\right|_{1} ^{2}\right] \sin \phi d \phi d \theta \\
& =\left(3 \times\left[2^{5}-1\right]\right) \int_{0}^{2 \pi}\left[-\left.\cos \phi\right|_{0} ^{\pi}\right] d \theta \\
& =93 \times 2 \int_{0}^{2 \pi} d \theta \\
& =93 \times 4 \pi
\end{aligned}
$$

As a result, outward flux of \vec{F} across S is $93 \times 4 \pi$.

Extra Credit:(2 points) Let $\vec{F}=M \hat{i}+N \hat{j}$ be a conservative vector field. What is the total circulation of \vec{F} along the following curves.

Answer: Since the vector field \vec{F} is conservative, and the curves are simple closed curves, total circulation of \vec{F} along the smiley is zero.

