Type your name here: \qquad
Signature: \qquad August 2, 2013

Before the exam begins:

- Fill in all boxes above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- check that you have all 8 pages of the exam. (The number of pages includes this cover page.)
- Write your name at the top (in the space provided) of EACH page. (This is to ensure your pages can be identified with you if the staple holding your exam stops working.)

During the exam:

- Keep your eyes on your own exam!
- No notes/books or electronics AT ALL!

Note that the exam length is exactly 1 hr 30 mins. When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Print your initials:

Trigonometry

- Formula:

$$
\begin{gathered}
\sin (a+b)=\sin a \cos b+\cos a \sin b, \quad \sin (a-b)=\sin a \cos b-\cos a \sin b \\
\cos (a+b)=\cos a \cos b-\sin a \sin b, \quad \cos (a-b)=\cos a \cos b+\sin a \sin b \\
\sin 2 x=2 \sin x \cos x, \quad \cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
\sin ^{2} x+\cos ^{2} x=1 \\
\sec ^{2} x-\tan ^{2} x=1 \\
\csc ^{2} x-\cot ^{2} x=1 .
\end{gathered}
$$

- Particular values:

	$x=0$	$x=\frac{\pi}{6}$	$x=\frac{\pi}{4}$	$x=\frac{\pi}{3}$	$x=\frac{\pi}{2}$	$x=\pi$
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	DNE	0
$\csc x$	DNE	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	DNE
$\sec x$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	DNE	-1
$\cot x$	DNE	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	DNE

Geometry

- Circle: If radius $=r$, then perimeter $=2 \pi r$ and area $=\pi r^{2}$.
- Sphere: If radius $=r$, then surface area $=4 \pi r^{2}$ and volume $=\frac{4}{3} \pi r^{3}$.
- Solid: Volume of a rectangular solid is length \times width \times height.
- Cone: If height $=h$ and radius (of circular base) $=r$, then volume $=\frac{1}{3} \pi r^{2} h$.

Logarithm

$$
\begin{aligned}
& \log a b=\log a+\log b, \quad \text { for } a>0, b>0 \\
& \log \frac{a}{b}=\log a-\log b, \quad \text { for } a>0, b>0 \\
& \log a^{b}=b \log a, \quad \text { for } a>0 \\
& e^{\ln a}=a, \quad \text { for } a>0 \\
& \ln e^{a}=a, \quad \text { true for any real number } a \\
& \ln e=1 \\
& \ln 1=0
\end{aligned}
$$

Print your initials:

Problem 1: (10 points) Find the limit $\lim _{x \rightarrow-1} f(x)$ (if exists), where

$$
f(x)= \begin{cases}\frac{1}{2} x^{3}+2, & \text { if } x \leq-1 \\ x^{2}+1, & \text { if } x>-1\end{cases}
$$

Solution: We compute

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =\frac{1}{2}(-1)^{3}+2 \\
& ==-\frac{1}{2}+2 \\
& =\frac{3}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =(-1)^{2}+1 \\
& =1+1 \\
& =2
\end{aligned}
$$

Since $\lim _{x \rightarrow-1^{-}} f(x) \neq \lim _{x \rightarrow-1^{+}} f(x)$, the limit $\lim _{x \rightarrow-1} f(x)$ does not exist.

Print your initials:

Problem 2: (10 points) Find the equation of the tangent line to the graph of $f(x)=x^{2} \sin x$ at $(0,0)$.

Solution: Slope of the tangent line is $f^{\prime}(0)$. Differentiating $f(x)$ with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x^{2}\right] \sin x+x^{2} \frac{d}{d x}[\sin x] \\
& =2 x \sin x+x^{2} \cos x
\end{aligned}
$$

Therefore $f^{\prime}(0)=0$. Consequently, equation of the tangent line is

$$
\begin{array}{ll}
& y-0=f^{\prime}(0)(x-0) \\
\text { i.e., } \quad & y=0 .
\end{array}
$$

Print your initials:

Problem 3: (10 points) Find the derivative of the function $f(x)=x \tan e^{x^{2}}$.

Solution: Using product rule and chain rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[x] \tan e^{x^{2}}+x \frac{d}{d x}\left[\tan e^{x^{2}}\right] \\
& =\tan e^{x^{2}}+x \sec ^{2} e^{x^{2}} \frac{d}{d x}\left[e^{x^{2}}\right] \\
& =\tan e^{x^{2}}+\left[x \sec ^{2} e^{x^{2}}\right] e^{x^{2}} \frac{d}{d x}\left[x^{2}\right] \\
& =\tan e^{x^{2}}+\left[x \sec ^{2} e^{x^{2}}\right] e^{x^{2}} 2 x \\
& =\tan e^{x^{2}}+2 x^{2} e^{x^{2}} \sec ^{2} e^{x^{2}}
\end{aligned}
$$

Problem 4: (10 points) A (square) baseball diamond has sides that are 90 feet long. A player 26 feet from third base is running at a speed of 30 feet per second. At what rate is the player's distance from home plate changing?

You don't need to simplify your answer.

Solution: Let player's distance from the home plate be s and from the third base is x (see figure). Therefore by Pythagorean theorem we have

$$
\begin{equation*}
s^{2}=x^{2}+90^{2} \tag{1}
\end{equation*}
$$

We know that the player is running at a speed of 30 feet per second towards the third base i.e., $\frac{d x}{d t}=30$ feet/sec. We want to find the rate of change of player's distance from the home plate i.e., $\frac{d s}{d t}$. Differentiating both sides of (1) with respect to t we have

$$
\begin{aligned}
& 2 s \frac{d s}{d t}=2 x \frac{d x}{d t} \\
\text { i.e., } & \frac{d s}{d t}=\frac{2 x}{2 s} \frac{d x}{d t} \\
\text { i.e., } & \frac{d s}{d t}=\frac{x}{s} \frac{d x}{d t} .
\end{aligned}
$$

We know that $\frac{d x}{d t}=30$ feet $/ \mathrm{sec}$. We know that $s^{2}=x^{2}+90^{2}$. Therefore when $x=26$ feet we have $s=\sqrt{26^{2}+90^{2}}$ feet. Hence value of $\frac{d s}{d t}$ when $x=26$ feet is

$$
\frac{d s}{d t}=\frac{26 \times 30}{\sqrt{26^{2}+90^{2}}} \text { feet } / \mathrm{sec}
$$

Print your initials:

Problem 5: (10 points) Find all relative extrema of the function $f(x)=2 x^{3}-15 x^{2}+36 x$.

Solution: Differentiating the function with respect to x we obtain

$$
f^{\prime}(x)=6 x^{2}-30 x+36
$$

To find the critical points we solve

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\text { i.e., } & 6 x^{2}-30 x+36=0 \\
\text { i.e., } & x^{2}-5 x+6=0 \\
\text { i.e., } & (x-2)(x-3)=0 \\
\text { i.e., } & x=2,3 .
\end{array}
$$

Now we do the following test

Test intervals	$-\infty<x<2$	$2<x<3$	$3<x<\infty$
Test points	$x=0$	$x=\frac{5}{2}$	$x=4$
Sign of $f^{\prime}(x)$	$f^{\prime}(0)=36>0$	$f^{\prime}\left(\frac{5}{2}\right)=-\frac{3}{2}<0$	$f^{\prime}(x)=12>0$
Conclusion	Increasing	Decreasing	Increasing

Print your initials:

Problem 6: (10 points) A rectangle is bounded by the x and y axes and the graph of $y=\frac{6-x}{2}$. What length and width should the rectangle have so that its area is maximum?

Solution: Let (x, y) be the coordinate of the top-right corner of the rectangle. Notice that length and width of the rectangle are respectively x and y. Therefore area of the rectangle is

$$
A=x y
$$

But we know that $y=\frac{6-x}{2}$. Therefore

$$
\begin{aligned}
A & =x \cdot \frac{6-x}{2} \\
& =\frac{1}{2}\left(6 x-x^{2}\right)
\end{aligned}
$$

Differentiating A with respect to x we have

$$
\begin{aligned}
\frac{d A}{d x} & =\frac{1}{2}(6-2 x) \\
& =3-x,
\end{aligned}
$$

and

$$
\frac{d^{2} A}{d x^{2}}=-1
$$

To find the critical numbers we solve

$$
\begin{array}{ll}
& \frac{d A}{d x}=0 \\
\text { i.e., } & 3-x=0 \\
\text { i.e., } & x=3 .
\end{array}
$$

Now we test

$$
\left.\frac{d^{2} A}{d x^{2}}\right|_{x=3}=-1<0
$$

Therefore at $x=3$ the area A will be maximized. Length of the maximum rectangle is $x=3$ unit and width is $y=\frac{6-3}{2}=\frac{3}{2}$ unit.

