Section 2.6
[5] $g(t)=\frac{1}{3} t^{3}-4 t^{2}+2 t$. Differentiating both sides with respect to t we have

$$
\begin{aligned}
g^{\prime}(t) & =\frac{1}{3} \times 3 t^{2}-4 \times 2 t+2 \\
& =t^{2}-8 t+2
\end{aligned}
$$

Differentiating $g^{\prime}(t)$ once again with respect to t we have

$$
g^{\prime \prime}(t)=2 t-8
$$

[12] $g(t)=-\frac{4}{(t+2)^{2}}$. Rewrite the function as $g(t)=-4(t+2)^{-2}$. Differentiating both sides with respect to t we have

$$
\begin{aligned}
g^{\prime}(t) & =-4 \times(-2)(t+2)^{-3} \frac{d}{d t}[t+2] \\
& =8(t+2)^{-3}
\end{aligned}
$$

Differentiating once again with respect to t we have

$$
\begin{aligned}
g^{\prime \prime}(t) & =8 \times(-3)(t+2)^{-4} \frac{d}{d t}[t+2] \\
& =-24(t+2)^{-4} \\
& =-\frac{24}{(t+2)^{4}}
\end{aligned}
$$

[24] $f(t)=\sqrt{2 t+3}$. Differentiating with respect to t we have

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}\left[(2 t+3)^{\frac{1}{2}}\right] \\
& =\frac{1}{2}(2 t+3)^{\frac{1}{2}-1} \frac{d}{d t}[2 t+3] \\
& =\frac{1}{2}(2 t+3)^{-\frac{1}{2}} \cdot 2 \\
& =(2 t+3)^{-\frac{1}{2}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f^{\prime \prime}(t) & =-\frac{1}{2}(2 t+3)^{-\frac{1}{2}-1} \frac{d}{d t}[2 t+3] \\
& =-\frac{1}{2}(2 t+3)^{-\frac{3}{2}} \cdot 2 \\
& =-(2 t+3)^{-\frac{3}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime \prime}(t) & =\frac{3}{2}(2 t+3)^{-\frac{3}{2}-1} \frac{d}{d t}[2 t+3] \\
& =\frac{3}{2}(2 t+3)^{-\frac{5}{2}} \cdot 2 \\
& =3(2 t+3)^{-\frac{5}{2}}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
f^{\prime \prime \prime}\left(\frac{1}{2}\right) & =3(1+3)^{-\frac{5}{2}} \\
& =3 \times 4^{-\frac{5}{2}} \\
& =3 \times\left(2^{2}\right)^{-\frac{5}{2}} \\
& =3 \times 2^{-5} \\
& =\frac{3}{2^{5}} \\
& =\frac{3}{32} .
\end{aligned}
$$

[30] $f^{\prime \prime \prime}(x)=2 \sqrt{x-1}$. Differentiating with respect to x we have

$$
\begin{aligned}
f^{(4)}(x) & =2 \frac{d}{d x}[\sqrt{x-1}] \\
& =2 \frac{d}{d x}\left[(x-1)^{\frac{1}{2}}\right] \\
& =2 \cdot \frac{1}{2}(x-1)^{\frac{1}{2}-1} \frac{d}{d x}[x-1] \\
& =(x-1)^{-\frac{1}{2}} \\
& =\frac{1}{\sqrt{x-1}} .
\end{aligned}
$$

[36] $f(x)=(x+2)(x-2)(x+3)(x-3)$. Rewrite the function as $f(x)=\left(x^{2}-2^{2}\right)\left(x^{2}-3^{2}\right)=$ $\left(x^{2}-4\right)\left(x^{2}-9\right)$ [Notice that I am using the formula $(a+b)(a-b)=a^{2}-b^{2}$ here]. Differentiating the function with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x^{2}-4\right]\left(x^{2}-9\right)+\left(x^{2}-4\right) \frac{d}{d x}\left[x^{2}-9\right] \\
& =2 x\left(x^{2}-9\right)+2 x\left(x^{2}-4\right) \\
& =2 x\left(x^{2}-9+x^{2}-4\right) \\
& =2 x\left(2 x^{2}-13\right)
\end{aligned}
$$

Differentiating once again with respect to x we get

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}[2 x]\left(2 x^{2}-13\right)+2 x \frac{d}{d x}\left[2 x^{2}-13\right] \\
& =2\left(2 x^{2}-13\right)+2 x \cdot 4 x \\
& =2\left(2 x^{2}-13\right)+8 x^{2} \\
& =4 x^{2}-26+8 x^{2} \\
& =12 x^{2}-26 .
\end{aligned}
$$

Solving the equation $f^{\prime \prime}(x)=0$ we have

$$
\begin{array}{r}
12 x^{2}-26=0 \\
\text { i.e., } \quad 12 x^{2}=26 \\
\text { i.e., } \quad x^{2}=\frac{13}{6} \\
\text { i.e., } \quad x= \pm \sqrt{\frac{13}{6}}
\end{array}
$$

Section 2.7

[3] $y^{2}=1-x^{2}, \quad 0 \leq x \leq 1$. Differentiating both sides with respect to x we have

$$
\begin{aligned}
\frac{d}{d x}\left[y^{2}\right] & =\frac{d}{d x}\left[1-x^{2}\right] \\
i . e ., \quad 2 y \frac{d y}{d x} & =-2 x \\
\text { i.e., } \frac{d y}{d x} & =-\frac{2 x}{2 y}=-\frac{x}{y} .
\end{aligned}
$$

[10] $f x y-y^{2} y-x=1$. Rewrite the expression as $x y-y^{2}=y-x$. Differentiating both
sides with respect to x we get

$$
\begin{array}{ll}
& \frac{d}{d x}\left[x y-y^{2}\right]=\frac{d}{d x}[y-x] \\
\text { i.e., } & \frac{d}{d x}[x y]-2 y \frac{d y}{d x}=\frac{d y}{d x}-1 \\
\text { i.e., } & {\left[x \frac{d y}{d x}+y\right]-2 y \frac{d y}{d x}=\frac{d y}{d x}-1} \\
\text { i.e., } & x \frac{d y}{d x}-2 y \frac{d y}{d x}-\frac{d y}{d x}=-1-y \\
\text { i.e., } & (x-2 y-1) \frac{d y}{d x}=-(1+y) \\
\text { i.e., } & \frac{d y}{d x}=-\frac{(1+y)}{x-2 y-1}
\end{array}
$$

[21] $x^{1 / 2}+y^{1 / 2}=9$. Differentiating both sides with respect to x we get

$$
\begin{array}{ll}
& \frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} y^{-\frac{1}{2}} \frac{d y}{d x}=0 \\
\text { i.e., } & x^{-\frac{1}{2}}+y^{-\frac{1}{2}} \frac{d y}{d x}=0 \\
\text { i.e., } & y^{-\frac{1}{2}} \frac{d y}{d x}=-x^{-\frac{1}{2}} \\
\text { i.e., } & \frac{d y}{d x}=-\frac{x^{-\frac{1}{2}}}{y^{-\frac{1}{2}}} \\
\text { i.e., } & \frac{d y}{d x}=-\frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}} .
\end{array}
$$

Therefore

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{(16,25)} & =\frac{\sqrt{25}}{\sqrt{16}}=\frac{5}{4} . \\
& =\frac{5}{4}
\end{aligned}
$$

$[24](x+y)^{3}=x^{3}+y^{3}$. Differentiating both side with respect to x we have

$$
\begin{array}{ll}
& 3(x+y)^{2} \frac{d}{d x}[x+y]=3 x^{2}+3 y^{2} \frac{d}{d x}[y] \\
\text { i.e., } & 3(x+y)^{2}\left[1+\frac{d y}{d x}\right]=3 x^{2}+3 y^{2} \frac{d y}{d x} \\
\text { i.e., } & (x+y)^{2}\left[1+\frac{d y}{d x}\right]=x^{2}+y^{2} \frac{d y}{d x} \\
\text { i.e., } & (x+y)^{2}+(x+y)^{2} \frac{d y}{d x}=x^{2}+y^{2} \frac{d y}{d x} \\
\text { i.e., } & (x+y)^{2} \frac{d y}{d x}-y^{2} \frac{d y}{d x}=x^{2}-(x+y)^{2} \\
\text { i.e., } & {\left[(x+y)^{2}-y^{2}\right] \frac{d y}{d x}=x^{2}-\left(x^{2}+2 x y+y^{2}\right)} \\
\text { i.e., } & {\left[\left(x^{2}+2 x y+y^{2}\right)-y^{2}\right] \frac{d y}{d x}=x^{2}-x^{2}-2 x y-y^{2}} \\
\text { i.e., } & {\left[x^{2}+2 x y\right] \frac{d y}{d x}=-2 x y-y^{2}} \\
\text { i.e., } & \frac{d y}{d x}=\frac{-2 x y-y^{2}}{x^{2}+2 x y} \\
\text { i.e., } & \frac{d y}{d x}=-\frac{y(2 x+y)}{x(x+2 y)} .
\end{array}
$$

$[29] 4 x^{2}+9 y^{2}=36$. Differentiating both sides with respect to x we have

$$
\begin{array}{ll}
& 8 x+18 y \frac{d y}{d x}=0 \\
\text { i.e., } & 18 y \frac{d y}{d x}=-8 x \\
\text { i.e., } & \frac{d y}{d x}=-\frac{8 x}{18 y}=-\frac{4 x}{9 y} .
\end{array}
$$

Therefore slope of the tangent line at $\left(\sqrt{5}, \frac{4}{3}\right)$ is

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{\left(\sqrt{5}, \frac{4}{3}\right)} & =-\frac{4 \sqrt{5}}{9 \cdot \frac{4}{3}} \\
& =-\frac{4 \sqrt{5}}{12} \\
& =-\frac{\sqrt{5}}{3}
\end{aligned}
$$

[37] Given equation $y^{2}=5 x^{3}$. Differentiating both sides with respect to x we have

$$
\begin{array}{ll}
& 2 y \frac{d y}{d x}=15 x^{2} \\
\text { i.e., } & \frac{d y}{d x}=\frac{15 x^{2}}{2 y}
\end{array}
$$

Therefore slope of the tangent line at $(1, \sqrt{5})$ is

$$
\left.\frac{d y}{d x}\right|_{(1, \sqrt{5})}=\frac{15}{2 \sqrt{5}}
$$

Equation of the tangent line at $(1, \sqrt{5})$ is

$$
\begin{array}{ll}
& y-\sqrt{5}=\frac{15}{2 \sqrt{5}}(x-1) \\
\text { i.e., } & 2 \sqrt{5}(y-\sqrt{5})=15(x-1) \\
\text { i.e., } & 2 \sqrt{5} y-10=15 x-15 \\
\text { i.e., } & 2 \sqrt{5} y-15 x+5=0 .
\end{array}
$$

Similarly, slope of the tangent line at $(1,-\sqrt{5})$ is

$$
\left.\frac{d y}{d x}\right|_{(1,-\sqrt{5})}=-\frac{15}{2 \sqrt{5}} .
$$

Equation of the tangent line at $(1,-\sqrt{5})$ is

$$
\begin{array}{ll}
& y-\sqrt{5}=-\frac{15}{2 \sqrt{5}}(x-1) \\
& \\
\text { i.e., } & 2 \sqrt{5}(y-\sqrt{5})=-15(x-1) \\
\text { i.e., } & 2 \sqrt{5} y-10=-15 x+15 \\
\text { i.e., } & 2 \sqrt{5} y+15 x-25=0 .
\end{array}
$$

[43] We have to find the rate of change of x with respect to p i.e., $\frac{d x}{d p}$. Let us rewrite the given equation in the following form

$$
\begin{array}{ll}
& p^{2}=\frac{200-x}{2 x} \\
\text { i.e., } & 2 x p^{2}=200-x
\end{array}
$$

Differentiating both sides with respect to p we have

$$
\begin{array}{ll}
& \frac{d}{d p}\left[2 x p^{2}\right]=\frac{d}{d p}[200-x] \\
\text { i.e., } & \frac{d}{d p}[2 x] p^{2}+2 x \frac{d}{d p}\left[p^{2}\right]=-\frac{d x}{d p} \\
\text { i.e., } & 2 p^{2} \frac{d x}{d p}+4 x p=-\frac{d x}{d p} \\
\text { i.e., } & 2 p^{2} \frac{d x}{d p}+\frac{d x}{d p}=-4 x p \\
\text { i.e., } & \left(2 p^{2}+1\right) \frac{d x}{d p}=-4 x p \\
\text { i.e., } & \frac{d x}{d p}=-\frac{4 x p}{2 p^{2}+1} .
\end{array}
$$

