Section 2.6

[5] $g(t) = \frac{1}{3}t^3 - 4t^2 + 2t$. Differentiating both sides with respect to t we have

$$g'(t) = \frac{1}{3} \times 3t^2 - 4 \times 2t + 2$$

= $t^2 - 8t + 2$.

Differentiating g'(t) once again with respect to t we have

$$g''(t) = 2t - 8.$$

[12] $g(t) = -\frac{4}{(t+2)^2}$. Rewrite the function as $g(t) = -4(t+2)^{-2}$. Differentiating both sides with respect to t we have

$$g'(t) = -4 \times (-2)(t+2)^{-3} \frac{d}{dt} [t+2]$$

= 8(t+2)^{-3}.

Differentiating once again with respect to t we have

$$g''(t) = 8 \times (-3)(t+2)^{-4} \frac{d}{dt} [t+2]$$

= -24(t+2)^{-4}
= -\frac{24}{(t+2)^4}.

[24] $f(t) = \sqrt{2t+3}$. Differentiating with respect to t we have

$$f'(t) = \frac{d}{dt} \left[(2t+3)^{\frac{1}{2}} \right]$$

= $\frac{1}{2} (2t+3)^{\frac{1}{2}-1} \frac{d}{dt} [2t+3]$
= $\frac{1}{2} (2t+3)^{-\frac{1}{2}} \cdot 2$
= $(2t+3)^{-\frac{1}{2}}$.

Similarly,

$$f''(t) = -\frac{1}{2}(2t+3)^{-\frac{1}{2}-1}\frac{d}{dt}[2t+3]$$
$$= -\frac{1}{2}(2t+3)^{-\frac{3}{2}} \cdot 2$$
$$= -(2t+3)^{-\frac{3}{2}},$$

and

$$f'''(t) = \frac{3}{2}(2t+3)^{-\frac{3}{2}-1}\frac{d}{dt}[2t+3]$$

= $\frac{3}{2}(2t+3)^{-\frac{5}{2}} \cdot 2$
= $3(2t+3)^{-\frac{5}{2}}$.

Therefore we have

$$f'''\left(\frac{1}{2}\right) = 3(1+3)^{-\frac{5}{2}}$$

= $3 \times 4^{-\frac{5}{2}}$
= $3 \times (2^2)^{-\frac{5}{2}}$
= 3×2^{-5}
= $\frac{3}{2^5}$
= $\frac{3}{32}$.

[30] $f'''(x) = 2\sqrt{x-1}$. Differentiating with respect to x we have

$$f^{(4)}(x) = 2\frac{d}{dx}[\sqrt{x-1}]$$

= $2\frac{d}{dx}\left[(x-1)^{\frac{1}{2}}\right]$
= $2 \cdot \frac{1}{2}(x-1)^{\frac{1}{2}-1}\frac{d}{dx}[x-1]$
= $(x-1)^{-\frac{1}{2}}$
= $\frac{1}{\sqrt{x-1}}$.

[36] f(x) = (x+2)(x-2)(x+3)(x-3). Rewrite the function as $f(x) = (x^2-2^2)(x^2-3^2) = (x^2-4)(x^2-9)$ [Notice that I am using the formula $(a+b)(a-b) = a^2-b^2$ here]. Differentiating the function with respect to x we have

$$f'(x) = \frac{d}{dx}[x^2 - 4](x^2 - 9) + (x^2 - 4)\frac{d}{dx}[x^2 - 9]$$

= $2x(x^2 - 9) + 2x(x^2 - 4)$
= $2x(x^2 - 9 + x^2 - 4)$
= $2x(2x^2 - 13).$

Differentiating once again with respect to x we get

$$f''(x) = \frac{d}{dx}[2x](2x^2 - 13) + 2x\frac{d}{dx}[2x^2 - 13]$$

= 2(2x^2 - 13) + 2x \cdot 4x
= 2(2x^2 - 13) + 8x^2
= 4x^2 - 26 + 8x^2
= 12x^2 - 26.

Solving the equation f''(x) = 0 we have

$$12x^{2} - 26 = 0$$

i.e., $12x^{2} = 26$
i.e., $x^{2} = \frac{13}{6}$
i.e., $x = \pm \sqrt{\frac{13}{6}}$.

Section 2.7

[3] $y^2 = 1 - x^2$, $0 \le x \le 1$. Differentiating both sides with respect to x we have

$$\frac{d}{dx}[y^2] = \frac{d}{dx}[1-x^2]$$

i.e., $2y\frac{dy}{dx} = -2x$
i.e., $\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$.

[10] $fxy - y^2y - x = 1$. Rewrite the expression as $xy - y^2 = y - x$. Differentiating both

sides with respect to x we get

$$\frac{d}{dx}[xy - y^2] = \frac{d}{dx}[y - x]$$
i.e.,
$$\frac{d}{dx}[xy] - 2y\frac{dy}{dx} = \frac{dy}{dx} - 1$$
i.e.,
$$\left[x\frac{dy}{dx} + y\right] - 2y\frac{dy}{dx} = \frac{dy}{dx} - 1$$
i.e.,
$$x\frac{dy}{dx} - 2y\frac{dy}{dx} - \frac{dy}{dx} = -1 - y$$
i.e.,
$$(x - 2y - 1)\frac{dy}{dx} = -(1 + y)$$
i.e.,
$$\frac{dy}{dx} = -\frac{(1 + y)}{x - 2y - 1}.$$

[21] $x^{1/2} + y^{1/2} = 9$. Differentiating both sides with respect to x we get

$$\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}y^{-\frac{1}{2}}\frac{dy}{dx} = 0$$

i.e., $x^{-\frac{1}{2}} + y^{-\frac{1}{2}}\frac{dy}{dx} = 0$
i.e., $y^{-\frac{1}{2}}\frac{dy}{dx} = -x^{-\frac{1}{2}}$
i.e., $\frac{dy}{dx} = -\frac{x^{-\frac{1}{2}}}{y^{-\frac{1}{2}}}$
i.e., $\frac{dy}{dx} = -\frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}.$

Therefore

$$\frac{dy}{dx}\Big|_{(16,25)} = \frac{\sqrt{25}}{\sqrt{16}} = \frac{5}{4}.$$
$$= \frac{5}{4}.$$

[24] $(x+y)^3 = x^3 + y^3$. Differentiating both side with respect to x we have

$$\begin{aligned} 3(x+y)^2 \frac{d}{dx} [x+y] &= 3x^2 + 3y^2 \frac{d}{dx} [y] \\ i.e., \quad 3(x+y)^2 \left[1 + \frac{dy}{dx} \right] &= 3x^2 + 3y^2 \frac{dy}{dx} \\ i.e., \quad (x+y)^2 \left[1 + \frac{dy}{dx} \right] &= x^2 + y^2 \frac{dy}{dx} \\ i.e., \quad (x+y)^2 + (x+y)^2 \frac{dy}{dx} = x^2 + y^2 \frac{dy}{dx} \\ i.e., \quad (x+y)^2 \frac{dy}{dx} - y^2 \frac{dy}{dx} = x^2 - (x+y)^2 \\ i.e., \quad [(x+y)^2 - y^2] \frac{dy}{dx} = x^2 - (x^2 + 2xy + y^2) \\ i.e., \quad [(x^2 + 2xy + y^2) - y^2] \frac{dy}{dx} = x^2 - x^2 - 2xy - y^2 \\ i.e., \quad [x^2 + 2xy] \frac{dy}{dx} = -2xy - y^2 \\ i.e., \quad \frac{dy}{dx} = \frac{-2xy - y^2}{x^2 + 2xy} \\ i.e., \quad \frac{dy}{dx} = -\frac{y(2x+y)}{x(x+2y)}. \end{aligned}$$

[29] $4x^2 + 9y^2 = 36$. Differentiating both sides with respect to x we have

$$8x + 18y\frac{dy}{dx} = 0$$

i.e.,
$$18y\frac{dy}{dx} = -8x$$

i.e.,
$$\frac{dy}{dx} = -\frac{8x}{18y} = -\frac{4x}{9y}.$$

Therefore slope of the tangent line at $\left(\sqrt{5}, \frac{4}{3}\right)$ is

$$\frac{dy}{dx}\Big|_{\left(\sqrt{5},\frac{4}{3}\right)} = -\frac{4\sqrt{5}}{9\cdot\frac{4}{3}} = -\frac{4\sqrt{5}}{12} = -\frac{4\sqrt{5}}{3}.$$

[37] Given equation $y^2 = 5x^3$. Differentiating both sides with respect to x we have

$$2y\frac{dy}{dx} = 15x^2$$

i.e.,
$$\frac{dy}{dx} = \frac{15x^2}{2y}.$$

Therefore slope of the tangent line at $(1,\sqrt{5})$ is

$$\left. \frac{dy}{dx} \right|_{(1,\sqrt{5})} = \frac{15}{2\sqrt{5}}.$$

Equation of the tangent line at $(1,\sqrt{5})$ is

$$y - \sqrt{5} = \frac{15}{2\sqrt{5}}(x - 1)$$

i.e., $2\sqrt{5}(y - \sqrt{5}) = 15(x - 1)$
i.e., $2\sqrt{5}y - 10 = 15x - 15$
i.e., $2\sqrt{5}y - 15x + 5 = 0$.

Similarly, slope of the tangent line at $(1,-\sqrt{5})$ is

$$\left. \frac{dy}{dx} \right|_{(1,-\sqrt{5})} = -\frac{15}{2\sqrt{5}}.$$

Equation of the tangent line at $(1,-\sqrt{5})$ is

$$y - \sqrt{5} = -\frac{15}{2\sqrt{5}}(x - 1)$$

i.e., $2\sqrt{5}(y - \sqrt{5}) = -15(x - 1)$
i.e., $2\sqrt{5}y - 10 = -15x + 15$
i.e., $2\sqrt{5}y + 15x - 25 = 0.$

[43] We have to find the rate of change of x with respect to p i.e., $\frac{dx}{dp}$. Let us rewrite the given equation in the following form

$$p^2 = \frac{200 - x}{2x}$$

i.e., $2xp^2 = 200 - x$.

Differentiating both sides with respect to p we have

$$\frac{d}{dp}[2xp^2] = \frac{d}{dp}[200 - x]$$
i.e.,
$$\frac{d}{dp}[2x]p^2 + 2x\frac{d}{dp}[p^2] = -\frac{dx}{dp}$$
i.e.,
$$2p^2\frac{dx}{dp} + 4xp = -\frac{dx}{dp}$$
i.e.,
$$2p^2\frac{dx}{dp} + \frac{dx}{dp} = -4xp$$
i.e.,
$$(2p^2 + 1)\frac{dx}{dp} = -4xp$$
i.e.,
$$\frac{dx}{dp} = -\frac{4xp}{2p^2 + 1}$$