Section 2.3

[18] The cost function is $C=104,000+7200 x$. Marginal cost for producing x units is $\frac{d C}{d x}=7200$ dollars.
[20] The cost function is $C=100(9+3 \sqrt{x})$. Marginal cost for producing x units is $\frac{d C}{d x}=100 \times \frac{3}{2 \sqrt{x}}=\frac{150}{\sqrt{x}}$ dollars.
[24] The revenue function is $R=50\left(20 x-x^{3 / 2}\right)$. Marginal cost for producing x units is $\frac{d R}{d x}=50\left(20-\frac{3}{2} x^{1 / 2}\right)=25(40-3 \sqrt{x})$ dollars.
[28] The profit function is $P=-0.5 x^{3}+30 x^{2}-164.25 x-1000$. Marginal profit for producing x units is $\frac{d P}{d x}=-1.5 x^{2}+60 x-164.25$ dollars.

Quiz 3, Problem 1

Problem: Using product rule and chain rule find the derivative of $f(x)=e^{x^{3}} \tan x^{2}$. Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[e^{x^{3}}\right] \tan x^{2}+e^{x^{3}} \frac{d}{d x}\left[\tan x^{2}\right] \quad \text { (product rule) } \\
& =e^{x^{3}} \frac{d}{d x}\left[x^{3}\right] \tan x^{2}+e^{x^{3}} \sec ^{2} x^{2} \frac{d}{d x}\left[x^{2}\right] \quad \text { (chain rule) } \\
& =3 x^{2} e^{x^{3}} \tan x^{2}+2 x e^{x^{3}} \sec ^{2} x^{2} \\
& =x e^{x^{3}}\left(3 x \tan x^{2}+2 \sec ^{2} x^{2}\right) .
\end{aligned}
$$

