Finding derivatives:

1. $f(x)=\frac{\sin x}{x}$. Using quotient rule we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x \frac{d}{d x}[\sin x]-\sin x \frac{d}{d x}[x]}{\sin ^{2} x} \\
& =\frac{x \cos x-\sin x}{\sin ^{2} x}
\end{aligned}
$$

2. $f(x)=x^{2} \sec x$. Using product rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x^{2}\right] \sec x+x^{2} \frac{d}{d x}[\sec x] \\
& =2 x \sec x+x^{2} \sec x \tan x \\
& =x \sec x(2+x \tan x)
\end{aligned}
$$

3. $f(x)=\sin x \tan x$. Using product rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[\sin x] \tan x+\sin x \frac{d}{d x}[\tan x] \\
& =\cos x \tan x+\sin x \sec ^{2} x \\
& =\cos x \frac{\sin x}{\cos x}+\sin x \sec ^{2} x \\
& =\sin x+\sin x \sec ^{2} x \\
& =\left(1+\sec ^{2} x\right) \sin x .
\end{aligned}
$$

4. $f(x)=e^{x} \sec x$. Using product rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[e^{x}\right] \sec x+e^{x} \frac{d}{d x}[\sec x] \\
& =e^{x} \sec x+e^{x} \sec x \tan x \\
& =e^{x}(1+\tan x) \sec x
\end{aligned}
$$

5. $f(x)=\frac{\cot x}{1+x^{2}}$. Using quotient rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(1+x^{2}\right) \frac{d}{d x}[\cot x]-\cot x \frac{d}{d x}\left[1+x^{2}\right]}{\left(1+x^{2}\right)^{2}} \\
& =\frac{-\left(1+x^{2}\right) \csc ^{2} x-(\cot x)(0+2 x)}{\left(1+x^{2}\right)^{2}} \\
& =-\frac{\left(1+x^{2}\right) \csc ^{2} x+2 x \cot x}{\left(1+x^{2}\right)^{2}} .
\end{aligned}
$$

6. $f(x)=x e^{x} \csc x$. Using general product rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[x] e^{x} \csc x+x \frac{d}{d x}\left[e^{x}\right] \csc x+x e^{x} \frac{d}{d x}[\csc x] \\
& =e^{x} \csc x+x e^{x} \csc x-x e^{x} \csc x \cot x \\
& =e^{x}(1+x-x \cot x) \csc x .
\end{aligned}
$$

Equation of tangent line:

1. $f(x)=e^{x} \sin x$. Using the product rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[e^{x}\right] \sin x+e^{x} \frac{d}{d x}[\sin x] \\
& =e^{x} \sin x+e^{x} \cos x \\
& =e^{x}(\sin x+\cos x)
\end{aligned}
$$

Slope of the tangent line at $x=0$ is $f^{\prime}(0)=e^{0}(\sin 0+\cos 0)=1$. Also notice that $f(0)=e^{0} \sin 0=0$. Therefore equation of the tangent line at $x=0$ is

$$
\begin{aligned}
& y-f(0)=f^{\prime}(0)(x-0) \\
\text { i.e., } \quad & y=x .
\end{aligned}
$$

2. $f(t)=\left(1+t^{2}\right) \cos t$. Using product rule we have

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}\left[1+t^{2}\right] \cos t+\left(1+t^{2}\right) \frac{d}{d t}[\cos t] \\
& =2 t \cos t-\left(1+t^{2}\right) \sin t
\end{aligned}
$$

Therefore slope of the tangent line at $x=\frac{\pi}{2}$ is

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{2}\right) & =2 \frac{\pi}{2} \cos \frac{\pi}{2}-\left(1+\frac{\pi^{2}}{4}\right) \sin \frac{\pi}{2} \\
& =-\left(1+\frac{\pi^{2}}{4}\right)
\end{aligned}
$$

Notice that $f\left(\frac{\pi}{2}\right)=\left(1+\frac{\pi^{2}}{4}\right) \cos \frac{\pi}{2}=0$. Therefore equation of the tangent line at $x=\frac{\pi}{2}$ is

$$
\begin{array}{ll}
& y-f\left(\frac{\pi}{2}\right)=f^{\prime}\left(\frac{\pi}{2}\right)\left(x-\frac{\pi}{2}\right) \\
i . e ., \quad y=-\left(1+\frac{\pi^{2}}{4}\right)\left(x-\frac{\pi}{2}\right)
\end{array}
$$

3. $g(x)=e^{2} \tan x$. Since e^{2} is just a constant, it is easy to see that $g^{\prime}(x)=e^{2} \sec ^{2} x$. Therefore slope of the tangent line at $x=\frac{\pi}{4}$ is $f^{\prime}\left(\frac{\pi}{4}\right)=e^{2} \sec ^{2} \frac{\pi}{4}=2 e^{2}$. Therefore equation of the tangent line at $\left(\frac{\pi}{4}, e^{2}\right)$ is

$$
\begin{gathered}
y-e^{2}=2 e^{2}\left(x-\frac{\pi}{4}\right) \\
\text { i.e., } \quad y-2 e^{2} x-e^{2}\left(1-\frac{\pi}{2}\right)=0
\end{gathered}
$$

4. $f(x)=x e^{x} \sec x$. Using the general product rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[x] e^{x} \sec x+x \frac{d}{d x}\left[e^{x}\right] \sec x+x e^{x} \frac{d}{d x}[\sec x] \\
& =e^{x} \sec x+x e^{x} \sec x+x e^{x} \sec x \tan x \\
& =e^{x}(1+x+x \tan x) \sec x
\end{aligned}
$$

Therefore slope of the tangent line at $(0,0)$ is

$$
\begin{aligned}
f^{\prime}(0) & =e^{0}(1+0+0 \tan 0) \sec 0 \\
& =1
\end{aligned}
$$

Hence equation of the tangent line at $(0,0)$ is

$$
\begin{aligned}
& y-0=(x-0) \\
\text { i.e, } \quad y-x & =0 .
\end{aligned}
$$

