Finding derivatives:

1. $f(x) = \frac{\sin x}{x}$. Using quotient rule we obtain

$$f'(x) = \frac{x \frac{d}{dx} [\sin x] - \sin x \frac{d}{dx} [x]}{\sin^2 x}$$
$$= \frac{x \cos x - \sin x}{\sin^2 x}.$$

2. $f(x) = x^2 \sec x$. Using product rule we have

$$f'(x) = \frac{d}{dx} [x^2] \sec x + x^2 \frac{d}{dx} [\sec x]$$

= $2x \sec x + x^2 \sec x \tan x$
= $x \sec x (2 + x \tan x).$

3. $f(x) = \sin x \tan x$. Using product rule we have

$$f'(x) = \frac{d}{dx}[\sin x] \tan x + \sin x \frac{d}{dx}[\tan x]$$

= $\cos x \tan x + \sin x \sec^2 x$
= $\cos x \frac{\sin x}{\cos x} + \sin x \sec^2 x$
= $\sin x + \sin x \sec^2 x$
= $(1 + \sec^2 x) \sin x.$

4. $f(x) = e^x \sec x$. Using product rule we have

$$f'(x) = \frac{d}{dx} [e^x] \sec x + e^x \frac{d}{dx} [\sec x]$$

= $e^x \sec x + e^x \sec x \tan x$
= $e^x (1 + \tan x) \sec x.$

5. $f(x) = \frac{\cot x}{1+x^2}$. Using quotient rule we have

$$f'(x) = \frac{(1+x^2)\frac{d}{dx}[\cot x] - \cot x\frac{d}{dx}[1+x^2]}{(1+x^2)^2}$$
$$= \frac{-(1+x^2)\csc^2 x - (\cot x)(0+2x)}{(1+x^2)^2}$$
$$= -\frac{(1+x^2)\csc^2 x + 2x\cot x}{(1+x^2)^2}.$$

6. $f(x) = xe^x \csc x$. Using general product rule we have

$$f'(x) = \frac{d}{dx}[x]e^x \csc x + x\frac{d}{dx}[e^x] \csc x + xe^x\frac{d}{dx}[\csc x]$$

= $e^x \csc x + xe^x \csc x - xe^x \csc x \cot x$
= $e^x(1 + x - x \cot x) \csc x.$

Equation of tangent line:

1. $f(x) = e^x \sin x$. Using the product rule we have

$$f'(x) = \frac{d}{dx} [e^x] \sin x + e^x \frac{d}{dx} [\sin x]$$

= $e^x \sin x + e^x \cos x$
= $e^x (\sin x + \cos x).$

Slope of the tangent line at x = 0 is $f'(0) = e^0(\sin 0 + \cos 0) = 1$. Also notice that $f(0) = e^0 \sin 0 = 0$. Therefore equation of the tangent line at x = 0 is

$$y - f(0) = f'(0)(x - 0)$$

i.e., $y = x$.

2. $f(t) = (1 + t^2) \cos t$. Using product rule we have

$$f'(t) = \frac{d}{dt} [1+t^2] \cos t + (1+t^2) \frac{d}{dt} [\cos t]$$

= $2t \cos t - (1+t^2) \sin t.$

Therefore slope of the tangent line at $x = \frac{\pi}{2}$ is

$$f'\left(\frac{\pi}{2}\right) = 2\frac{\pi}{2}\cos\frac{\pi}{2} - \left(1 + \frac{\pi^2}{4}\right)\sin\frac{\pi}{2} \\ = -\left(1 + \frac{\pi^2}{4}\right).$$

Notice that $f\left(\frac{\pi}{2}\right) = \left(1 + \frac{\pi^2}{4}\right)\cos\frac{\pi}{2} = 0$. Therefore equation of the tangent line at $x = \frac{\pi}{2}$ is

$$y - f\left(\frac{\pi}{2}\right) = f'\left(\frac{\pi}{2}\right)\left(x - \frac{\pi}{2}\right)$$

i.e.,
$$y = -\left(1 + \frac{\pi^2}{4}\right)\left(x - \frac{\pi}{2}\right).$$

3. $g(x) = e^2 \tan x$. Since e^2 is just a constant, it is easy to see that $g'(x) = e^2 \sec^2 x$. Therefore slope of the tangent line at $x = \frac{\pi}{4}$ is $f'\left(\frac{\pi}{4}\right) = e^2 \sec^2 \frac{\pi}{4} = 2e^2$. Therefore equation of the tangent line at $\left(\frac{\pi}{4}, e^2\right)$ is

$$y - e^{2} = 2e^{2}\left(x - \frac{\pi}{4}\right)$$

i.e., $y - 2e^{2}x - e^{2}\left(1 - \frac{\pi}{2}\right) = 0.$

4. $f(x) = xe^x \sec x$. Using the general product rule we have

$$f'(x) = \frac{d}{dx}[x]e^x \sec x + x\frac{d}{dx}[e^x] \sec x + xe^x\frac{d}{dx}[\sec x]$$

= $e^x \sec x + xe^x \sec x + xe^x \sec x \tan x$
= $e^x(1 + x + x \tan x) \sec x.$

Therefore slope of the tangent line at (0,0) is

$$f'(0) = e^{0}(1+0+0\tan 0) \sec 0$$

= 1.

Hence equation of the tangent line at (0,0) is

$$y - 0 = (x - 0)$$

i.e, $y - x = 0$.