Section 2.2

[1]
(a) $f(x)=x^{2}$. Using power rule we have $f^{\prime}(x)=2 x$. Therefore slope of the tangent at $x=1$ is $f^{\prime}(1)=2$.
(b) $f(x)=x^{1 / 2}$. Using power rule we have $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$. Therefore slope of the tangent at $x=1$ is $f^{\prime}(1)=\frac{1}{2}$.
[4]
(a) $f(x)=x^{-1 / 2}$. Using power rule we have $f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}$. Therefore slope of the tangent at $x=1$ is $f^{\prime}(1)=-\frac{1}{2}$.
(b) $f(x)=x^{-2}$. Using power rule we have $f^{\prime}(x)=-2 x^{-3}$. Therefore slope of the tangent at $x=1$ is $f^{\prime}(1)=-2$.
[6] $f(x)=-2$. Using constant rule we have $f^{\prime}(x)=0$.
[12] $f(x)=x^{3}-9 x^{2}+2$. Using sum-difference rule, constant multiple rule, power rule, and constant rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x^{3}\right]-\frac{d}{d x}\left[9 x^{2}\right]+\frac{d}{d x}[2] \\
& =3 x^{2}-9 \frac{d}{d x}\left[x^{2}\right]+0 \\
& =3 x^{2}-18 x
\end{aligned}
$$

[15] $f(t)=4 t^{4 / 3}$. Using power rule, and constant multiple rule we have $f^{\prime}(t)=4 \times \frac{4}{3} t^{\frac{4}{3}-1}=$ $\frac{16}{3} t^{1 / 3}$.
[18] $g(x)=4 \sqrt[3]{x}+2$. Using sum-difference rule, constant multiple rule, constant rule, and
power rule we have

$$
\begin{aligned}
g^{\prime}(x) & =4 \frac{d}{d x}[\sqrt[3]{x}]+0 \\
& =4 \frac{d}{d x}\left[x^{1 / 3}\right] \\
& =4 \frac{1}{3} x^{1 / 3-1} \\
& =\frac{4}{3} x^{-2 / 3}
\end{aligned}
$$

[23] $f(x)=\frac{1}{(4 x)^{3}}$. we rewrite it as $f(x)=\frac{1}{4^{3} x^{3}}=\frac{1}{4^{3}} x^{-3}$. Using power rule we have $f^{\prime}(x)=\frac{1}{4^{3}} \times(-3) x^{-4}$. After simplification we have $f^{\prime}(x)=-\frac{3}{64 x^{4}}$.
[25] $f(x)=\frac{\sqrt{x}}{x}$. Rewrite it as $f(x)=\frac{x^{1 / 2}}{x}=x^{-1 / 2}$. Using power rule we have $f^{\prime}(x)=$ $-\frac{1}{2} x^{-\frac{1}{2}-1}=-\frac{1}{2} x^{-\frac{3}{2}}$. After simplification we have $f^{\prime}(x)=-\frac{1}{2 x^{3 / 2}}$.
[26] $f(x)=\frac{4 x}{x^{-3}}$. Rewrite it as $f(x)=4 x \times x^{3}=4 x^{4}$. Using power rule we have $f^{\prime}(x)=4 \times 4 x^{3} \stackrel{x^{-3}}{=} 16 x^{3}$. No further simplification is needed.
[29] $f(x)=-\frac{1}{2} x\left(1+x^{2}\right)$. Using product rule and power rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[-\frac{x}{2}\right]\left(1+x^{2}\right)+\left[-\frac{x}{2}\right] \frac{d}{d x}\left[\left(1+x^{2}\right)\right] \\
& =-\frac{1}{2}\left(1+x^{2}\right)-\frac{x}{2}(0+2 x) \\
& =-\frac{1}{2}\left(1+x^{2}\right)-x^{2} \\
& =-\frac{1}{2}-\frac{3}{2} x^{2}
\end{aligned}
$$

Therefore value of the derivative at $(1,-1)$ is $f^{\prime}(1)=-\frac{1}{2}-\frac{3}{2}=-2$.
[31] $f(x)=(2 x+1)^{2}$. Using power rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[(2 x+1)^{2}\right] \\
& =\frac{d}{d x}\left[4 x^{2}+4 x+1\right] \\
& =(4 \times 2 x)+4 \\
& =8 x+4
\end{aligned}
$$

Therefore the value of the derivative at $(0,1)$ is $f^{\prime}(0)=4$.

This problem can also be solved using the chain rule. We will discuss about that in next lecture.
[41] $f(x)=\frac{2 x^{3}-4 x^{2}+3}{x^{2}}$. Using quotient rule we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{2} \frac{d}{d x}\left[2 x^{3}-4 x^{2}+3\right]-\left(2 x^{3}-4 x^{2}+3\right) \frac{d}{d x}\left[x^{2}\right]}{x^{4}} \\
& =\frac{x^{2}\left[6 x^{2}-8 x\right]-\left(2 x^{3}-4 x^{2}+3\right) \times 2 x}{x^{4}} \\
& =\frac{\left[6 x^{4}-8 x^{3}\right]-\left[4 x^{4}-8 x^{3}+6 x\right]}{x^{4}} \\
& =\frac{2 x^{4}-6 x}{x^{4}} \\
& =2-\frac{6}{x^{3}} .
\end{aligned}
$$

Alternative method: We can rewrite the function as $f(x)=2 x-4+3 x^{-2}$. Now using power rule we have

$$
f^{\prime}(x)=2+3 \times(-2) x^{-3}=2-\frac{6}{x^{3}} .
$$

[44] $f(x)=\frac{-6 x^{3}+3 x^{2}-2 x+1}{x}$. We can rewrite the function as $f(x)=-6 x^{2}+3 x-2+x^{-1}$. Using the power rule we have

$$
f^{\prime}(x)=-12 x+3-x^{-2} .
$$

[49] $f(x)=\sqrt[3]{x}+\sqrt[5]{x}$. Using power rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[\sqrt[3]{x}+\sqrt[5]{x}] \\
& =\frac{d}{d x}\left[x^{1 / 3}+x^{1 / 5}\right] \\
& =\frac{1}{3} x^{\frac{1}{3}-1}+\frac{1}{5} x^{\frac{1}{5}-1} \\
& =\frac{1}{3} x^{-2 / 3}+\frac{1}{5} x^{-4 / 5} \\
& =\frac{1}{3 x^{2 / 3}}+\frac{1}{5 x^{4 / 5}} .
\end{aligned}
$$

Therefore slope of the tangent line is $f^{\prime}(1)=\frac{1}{3}+\frac{1}{5}=\frac{8}{15}$. Hence equation of the tangent line at $(1,2)$ is

$$
\begin{array}{ll}
& y-2=\frac{8}{15}(x-1) \\
\text { i.e., } & 15 y-30=8 x-8 \\
\text { i.e., } & 15 y-8 x-22=0 .
\end{array}
$$

[53] $f(x)=\frac{1}{2} x^{2}+5 x$. Using power rule we have $f^{\prime}(x)=\frac{1}{2} 2 x+5=x+5$. We know that slope of the tangent line at x is $f^{\prime}(x)$. If the tangent line is horizontal, then slope of the tangent line must be zero. Solving the equation $f^{\prime}(x)=0$ we obtain $x=-5$. Therefore at $x=-5$ we have $f^{\prime}(x)=0$. Hence at $x=-5$ the graph of $f(x)$ has a horizontal tangent line.
[57(a)] Given $f(x)=h(x)-2$. Differentiating both sides with respect to x we get $f^{\prime}(x)=h^{\prime}(x)-0=h^{\prime}(x)$. Since we know that $f^{\prime}(1)=3$, therefore we have $h^{\prime}(1)=f^{\prime}(1)=3$
[57(d)] Given $h(x)=-1+2 f(x)$. Differentiating both sides with respect to x we get $h^{\prime}(x)=0+2 f^{\prime}(x)=2 f^{\prime}(x)$. Since $f^{\prime}(1)=3$, we get $h^{\prime}(1)=2 f^{\prime}(1)=6$.

Section 2.4
[5] $g(x)=\left(x^{2}-4 x+3\right)(x-2)$. Using product rule

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left[x^{2}-4 x+3\right](x-2)+\left(x^{2}-4 x+3\right) \frac{d}{d x}[x-2] \\
& =(2 x-4)(x-2)+\left(x^{2}-4 x+3\right)(1+0) \\
& =(2 x-4)(x-2)+\left(x^{2}-4 x+3\right)
\end{aligned}
$$

Therefore $g^{\prime}(4)=(8-4)(4-2)+(16-16+3)=8+3=11$.

Alternative method: Rewrite the function as $g(x)=(x-1)(x-3)(x-2)$. Using general product rule we get

$$
\begin{aligned}
g^{\prime}(x) & =\left[\frac{d}{d x}(x-1)\right](x-3)(x-2)+(x-1)\left[\frac{d}{d x}(x-3)\right](x-2)+(x-1)(x-3)\left[\frac{d}{d x}(x-2)\right] \\
& =(1+0)(x-3)(x-2)+(x-1)(1+0)(x-2)+(x-1)(x-3)(1+0) \\
& =(x-3)(x-2)+(x-1)(x-2)+(x-1)(x-3) .
\end{aligned}
$$

Therefore $g^{\prime}(4)=(4-3)(4-2)+(4-1)(4-2)+(4-1)(4-3)=2+6+3=11$.
[19] $f(x)=\frac{4 x^{2}-3 x}{8 \sqrt{x}}$. Rewrite the function as

$$
\begin{aligned}
f(x) & =\frac{4 x^{2}-3 x}{8 x^{1 / 2}} \\
& =\frac{1}{8}\left(4 x^{2}-3 x\right) x^{-1 / 2} \\
& =\frac{1}{8}\left(4 x^{3 / 2}-3 x^{1 / 2}\right) \\
& =\frac{1}{2} x^{3 / 2}-\frac{3}{8} x^{1 / 2} .
\end{aligned}
$$

Using power rule we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\left[\frac{1}{2} \times \frac{3}{2} x^{1 / 2}\right]-\left[\frac{3}{8} \times \frac{1}{2} x^{-1 / 2}\right] \\
& =\frac{3}{4} x^{1 / 2}-\frac{3}{16} x^{-1 / 2} \\
& =\frac{3}{4} \sqrt{x}-\frac{3}{16 \sqrt{x}}
\end{aligned}
$$

[21] $f(x)=\frac{x^{2}-4 x+3}{x-1}$. Note that the function is not defined for $x=1$ (we have $\frac{0}{0}$ form for $x=1$). We can rewrite the function as $f(x)=\frac{(x-1)(x-3)}{x-1}=x-3$ for $x \neq 1$. Differentiating, we get $f^{\prime}(x)=1+0=1$ for $x \neq 1$.
[31] $f(x)=\frac{3-2 x-x^{2}}{x^{2}-1}$. This function is not defined for $x= \pm 1$. We can rewrite the function as $f(x)=\frac{(1-x)(3+x)}{(x+1)(x-1)}=-\frac{3+x}{x+1}$ if $x \neq \pm 1$. Using quotient rule we have

$$
\begin{aligned}
f^{\prime}(x) & \left.=-\frac{(x+1)\left[\frac{d}{d x}(3+x)\right]-(3+x)\left[\frac{d}{d x}(x+1)\right]}{(} x+1\right)^{2} \\
& =-\frac{(x+1)-(3+x)}{(x+1)^{2}} \\
& =-\frac{-2}{(x+1)^{2}} \\
& =\frac{2}{(x+1)^{2}}
\end{aligned}
$$

for $x \neq \pm 1$.
[37] $g(x)=\left(\frac{x-3}{x+4}\right)\left(x^{2}+2 x+1\right)$. Using product rule and quotient rule we have

$$
\begin{aligned}
g^{\prime}(x) & =\left[\frac{d}{d x}\left(\frac{x-3}{x+4}\right)\right]\left(x^{2}+2 x+1\right)+\left(\frac{x-3}{x+4}\right)\left[\frac{d}{d x}\left(x^{2}+2 x+1\right)\right] \\
& =\left[\frac{(x+4) \frac{d}{d x}(x-3)-(x-3) \frac{d}{d x}(x+4)}{(x+4)^{2}}\right]\left(x^{2}+2 x+1\right)+\left(\frac{x-3}{x+4}\right)[2 x+2] \\
& =\left[\frac{(x+4)-(x-3)}{(x+4)^{2}}\right]\left(x^{2}+2 x+1\right)+2\left(\frac{x-3}{x+4}\right)(x+1) \\
& =\frac{7}{(x+4)^{2}}\left(x^{2}+2 x+1\right)+2\left(\frac{x-3}{x+4}\right)(x+1) \\
& =\frac{7(x+1)^{2}}{(x+4)^{2}}+2\left(\frac{x-3}{x+4}\right)(x+1) \\
& =\frac{(x+1)}{(x+4)}\left[\frac{7(x+1)}{(x+4)}+2(x-3)\right] \\
& =\frac{(x+1)}{(x+4)}\left[\frac{7(x+1)+2(x-3)(x+4)}{(x+4)}\right] \\
& =\frac{(x+1)}{(x+4)}\left[\frac{7 x+7+2\left(x^{2}+x-12\right)}{(x+4)}\right] \\
& =\frac{(x+1)}{(x+4)} \frac{\left(2 x^{2}+9 x-17\right)}{(x+4)} \\
& =\frac{\left(2 x^{3}+9 x^{2}-17 x\right)+\left(2 x^{2}+9 x-17\right)}{(x+4)^{2}} \\
& =\frac{2 x^{3}+11 x^{2}-8 x-17}{(x+4)^{2}} .
\end{aligned}
$$

[43] $f(x)=\left(\frac{x+5}{x-1}\right)(2 x+1)$. Using product rule and quotient rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\left[\frac{d}{d x}\left(\frac{x+5}{x-1}\right)\right](2 x+1)+\left(\frac{x+5}{x-1}\right)\left[\frac{d}{d x}(2 x+1)\right] \\
& =\left[\frac{(x-1) \frac{d}{d x}(x+5)-(x+5) \frac{d}{d x}(x-1)}{(x-1)^{2}}\right](2 x+1)+\left(\frac{x+5}{x-1}\right)[2+0] \\
& =\left[\frac{(x-1)-(x+5)}{(x-1)^{2}}\right](2 x+1)+2\left(\frac{x+5}{x-1}\right) \\
& =\frac{-6(2 x+1)}{(x-1)^{2}}+2\left(\frac{x+5}{x-1}\right) .
\end{aligned}
$$

Slope of the tangent line at $x=0$ is

$$
\begin{aligned}
f^{\prime}(0) & =\frac{-6}{(-1)^{2}}+2 \frac{5}{-1} \\
& =-6-10 \\
& =-16
\end{aligned}
$$

Therefore equation of the tangent line at $(0,-5)$ is

$$
\begin{array}{ll}
& y-(-5)=-16(x-0) \\
\text { i.e., } & y+16 x+5=0 .
\end{array}
$$

