Section 1.5
[1] Provided $f(x)=5 x+4$.

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$	13.5	13.95	13.995	$?$	14.005	14.05	14.5

From the table

$$
\lim _{x \rightarrow 2}(5 x+4)=14
$$

[10] From the graph it is clear that

$$
\begin{array}{r}
\lim _{x \rightarrow 1} f(x)=-2 \\
\lim _{x \rightarrow 3} f(x)=0
\end{array}
$$

[12] From the figure it is clear that

$$
\begin{gathered}
\lim _{x \rightarrow-2} h(x)=-5 \\
\lim _{x \rightarrow 0} h(x)=-3 .
\end{gathered}
$$

[17] It is easy to see from the graph that

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=1 \\
& \lim _{x \rightarrow 3^{-}} f(x)=1
\end{aligned}
$$

Therefore the limit exists and

$$
\lim _{x \rightarrow 3} f(x)=1
$$

[20] From the graph we see that

$$
\begin{gathered}
\lim _{x \rightarrow-2^{+}} f(x)=2 \\
\lim _{x \rightarrow-2^{-1}} f(x)=2 .
\end{gathered}
$$

Therefore the limit exists and

$$
\lim _{x \rightarrow-2} f(x)=2
$$

Notice that the actual value of the function at -2 is 3 i.e., $f(-2)=3$. But the limiting value is 2 i.e., $\lim _{x \rightarrow-2} f(x)=2$. Interesting! we will talk about this in continuity chapter.
[22] From the graph we see that

$$
\begin{gathered}
\lim _{x \rightarrow-1^{+}} f(x)=0 \\
\lim _{x \rightarrow-1^{-}} f(x)=2
\end{gathered}
$$

Since $\lim _{x \rightarrow-1^{+}} f(x) \neq \lim _{x \rightarrow-1^{-}} f(x)$, therefore $\lim _{x \rightarrow-1} f(x)$ does not exist.
[29]

$$
\lim _{x \rightarrow 3} \sqrt{x+1}=\sqrt{4}=2
$$

[41] Notice that this is a $\frac{0}{0}$ case.

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1} & =\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{x+1} \\
& =\lim _{x \rightarrow-1}(x-1)=-2
\end{aligned}
$$

[50] Notice that

$$
|x-2|=\left\{\begin{array}{cl}
(x-2), & \text { if } x-2>0 \\
-(x-2), & \text { if } x-2<0
\end{array}\right.
$$

Therefore we have

$$
\begin{aligned}
\frac{|x-2|}{x-2} & = \begin{cases}\frac{(x-2)}{x-2}, & \text { if } x-2>0 \\
\frac{-(x-2)}{x-2}, & \text { if } x-2<0\end{cases} \\
& =\left\{\begin{array}{cl}
1, & \text { if } x>2 \\
-1, & \text { if } x<2
\end{array}\right.
\end{aligned}
$$

So the limits are following

$$
\begin{gathered}
\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=1 \\
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=-1 .
\end{gathered}
$$

Since $\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2} \neq \lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}$, therefore $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.
[51] Given

$$
f(x)=\left\{\begin{aligned}
\frac{1}{3} x-2, & \text { if } x \leq 3 \\
-2 x+5, & \text { if } x>3
\end{aligned}\right.
$$

It is easy to see that

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=\frac{3}{3}-2=1-2=-1 \\
& \lim _{x \rightarrow 3^{+}} f(x)=-(2 \times 3)+5=-1
\end{aligned}
$$

Therefore we have

$$
\lim _{x \rightarrow 3} f(x)=-1
$$

