Section 3.6

[1] Given function $f(x)=\frac{x^{2}+1}{x^{2}}$. Setting denominator to zero we get $x=0$. The numerator $x^{2}+1$ is not zero at $x=0$. So, $x=0$ is a vertical asymptote.

To find horizontal asymptote we compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{2}} \\
& =\lim _{x \rightarrow \infty}\left[1+\frac{1}{x^{2}}\right] \\
& =1
\end{aligned}
$$

Therefore the horizontal asymptote is $y=1$.
[7] Given function $f(x)=\frac{x^{2}-1}{2 x^{2}-8}$. Setting denominator to zero we get $2 x^{2}-8=0$ i.e., $x= \pm 2$. We also notice that $x^{2}-1$ is not zero at $x= \pm 2$. Therefore there are two vertical asymptotes, namely $x=2$ and $x=-2$. To find the horizontal asymptote we compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}-8} \\
& =\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{2-\frac{8}{x^{2}}} \\
& =\frac{1-0}{2-0} \\
& =\frac{1}{2}
\end{aligned}
$$

Therefore equation of the horizontal asymptote is $y=\frac{1}{2}$.
[12] Given function $f(x)=2+\frac{x^{2}}{x^{4}+1}$. Notice that there is no vertical asymptote. To find the horizontal asymptote we compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty}\left[2+\frac{x^{2}}{x^{4}+1}\right] \\
& =2+\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}}{1+\frac{1}{x^{4}}} \\
& =2+\frac{0}{1+0} \\
& =2
\end{aligned}
$$

Equation of the horizontal asymptote is $y=2$. We also notice that $f(0)=2$. Graph of this function is graph (a).
[14] Given function $f(x)=\frac{2 x^{2}-3 x+5}{x^{2}+1}$. Notice that there is no solution of $x^{2}+1=0$. Therefore there is no vertical asymptote. To find the horizontal asymptote we compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+5}{x^{2}+1} \\
& =\lim _{x \rightarrow \infty} \frac{2-\frac{3}{x}+\frac{5}{x^{2}}}{1+\frac{1}{x^{2}}} \\
& =\frac{2-0+0}{1+0} \\
& =2
\end{aligned}
$$

Therefore the horizontal asymptote is $y=2$. Notice that $f(0)=5$. Therefore Graph of the

function is the graph (d).

Section 3.7

[11] Given function $f(x)=x^{3}-6 x^{2}+3 x+10$. To find the x intercepts we solve $f(x)=0$

$$
\begin{array}{ll}
& x^{3}-6 x^{2}+3 x+10=0 \\
\text { i.e., } & x^{3}+x^{2}-7 x^{2}-7 x+10 x+10=0 \\
\text { i.e., } & x^{2}(x+1)-7 x(x+1)+10(x+1)=0 \\
\text { i.e., } & \left(x^{2}-7 x+10\right)(x+1)=0 \\
\text { i.e., } & (x-2)(x-5)(x+1)=0 \\
\text { i.e., } & x=-1,2,5 .
\end{array}
$$

Now differentiating f with respect to x we obtain

$$
f^{\prime}(x)=3 x^{2}-12 x+3,
$$

and

$$
f^{\prime \prime}(x)=6 x-12
$$

Solving $f^{\prime}(x)=0$ we get $x=2 \pm \sqrt{3}$, and solving $f^{\prime \prime}(x)=0$ we get $x=2$. Key points are $x=-1,2-\sqrt{3}, 2,2+\sqrt{3}, 5$. We do the following test

	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	Characteristics of graph
$-\infty<x<-1$		+	-	Increasing, concave downward
$x=-1$	0	+	-	Increasing, x intercept
$-1<x<2-\sqrt{3}$		+	-	Increasing, concave downward
$x=2-\sqrt{3}$	$\sqrt{3}(3+\sqrt{3})^{2}$	0	-	relative maximum
$2-\sqrt{3}<x<2$		-	-	Decreasing, concave downward
$x=2$	0	-	0	Point of inflection
$2<x<2+\sqrt{3}$		-	+	Decreasing, concave upward
$x=2+\sqrt{3}$	$-6 \sqrt{3}$	0	+	Relative minimum
$2+\sqrt{3}<x<5$		+	+	Increasing, Concave upward
$x=5$	0	+	+	Increasing, x intercept
$5<x<\infty$		+	+	Increasing, concave upward

Finally, combining all the above information we have the following graph.

