Section 3.6

[1] Given function $f(x) = \frac{x^2+1}{x^2}$. Setting denominator to zero we get x = 0. The numerator $x^2 + 1$ is not zero at x = 0. So, x = 0 is a vertical asymptote.

To find horizontal asymptote we compute

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 + 1}{x^2}$$
$$= \lim_{x \to \infty} \left[1 + \frac{1}{x^2} \right]$$
$$= 1.$$

Therefore the horizontal asymptote is y = 1.

[7] Given function $f(x) = \frac{x^2-1}{2x^2-8}$. Setting denominator to zero we get $2x^2 - 8 = 0$ i.e., $x = \pm 2$. We also notice that $x^2 - 1$ is not zero at $x = \pm 2$. Therefore there are two vertical asymptotes, namely x = 2 and x = -2. To find the horizontal asymptote we compute

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 - 1}{2x^2 - 8}$$
$$= \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{2 - \frac{8}{x^2}}$$
$$= \frac{1 - 0}{2 - 0}$$
$$= \frac{1}{2}.$$

Therefore equation of the horizontal asymptote is $y = \frac{1}{2}$.

[12] Given function $f(x) = 2 + \frac{x^2}{x^4+1}$. Notice that there is no vertical asymptote. To find the horizontal asymptote we compute

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[2 + \frac{x^2}{x^4 + 1} \right]$$
$$= 2 + \lim_{x \to \infty} \frac{\frac{1}{x^2}}{1 + \frac{1}{x^4}}$$
$$= 2 + \frac{0}{1 + 0}$$
$$= 2.$$

Equation of the horizontal asymptote is y = 2. We also notice that f(0) = 2. Graph of this function is graph (a).

[14] Given function $f(x) = \frac{2x^2 - 3x + 5}{x^2 + 1}$. Notice that there is no solution of $x^2 + 1 = 0$. Therefore there is no vertical asymptote. To find the horizontal asymptote we compute

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x^2 - 3x + 5}{x^2 + 1}$$
$$= \lim_{x \to \infty} \frac{2 - \frac{3}{x} + \frac{5}{x^2}}{1 + \frac{1}{x^2}}$$
$$= \frac{2 - 0 + 0}{1 + 0}$$
$$= 2.$$

Therefore the horizontal asymptote is y = 2. Notice that f(0) = 5. Therefore Graph of the

function is the graph (d).

Section 3.7

[11] Given function $f(x) = x^3 - 6x^2 + 3x + 10$. To find the x intercepts we solve f(x) = 0

$$x^{3} - 6x^{2} + 3x + 10 = 0$$

i.e.,
$$x^{3} + x^{2} - 7x^{2} - 7x + 10x + 10 = 0$$

i.e.,
$$x^{2}(x+1) - 7x(x+1) + 10(x+1) = 0$$

i.e.,
$$(x^{2} - 7x + 10)(x+1) = 0$$

i.e.,
$$(x-2)(x-5)(x+1) = 0$$

i.e.,
$$x = -1, 2, 5.$$

Now differentiating f with respect to x we obtain

$$f'(x) = 3x^2 - 12x + 3,$$

and

$$f''(x) = 6x - 12.$$

Solving f'(x) = 0 we get $x = 2 \pm \sqrt{3}$, and solving f''(x) = 0 we get x = 2. Key points are $x = -1, 2 - \sqrt{3}, 2, 2 + \sqrt{3}, 5$. We do the following test

	f(x)	f'(x)	f''(x)	Characteristics of graph
$-\infty < x < -1$		+	—	Increasing, concave downward
x = -1	0	+	—	Increasing, x intercept
$-1 < x < 2 - \sqrt{3}$		+	—	Increasing, concave downward
$x = 2 - \sqrt{3}$	$\sqrt{3}(3+\sqrt{3})^2$	0	—	relative maximum
$2 - \sqrt{3} < x < 2$		—	—	Decreasing, concave downward
x = 2	0	_	0	Point of inflection
$2 < x < 2 + \sqrt{3}$		_	+	Decreasing, concave upward
$x = 2 + \sqrt{3}$	$-6\sqrt{3}$	0	+	Relative minimum
$2 + \sqrt{3} < x < 5$		+	+	Increasing, Concave upward
x = 5	0	+	+	Increasing, x intercept
$5 < x < \infty$		+	+	Increasing, concave upward

Finally, combining all the above information we have the following graph.

