Section 3.3

[1] Given function $f(x)=x^{2}-x-2$. Differentiating twice with respect to x we get $f^{\prime}(x)=2 x-1$ and $f^{\prime \prime}(x)=2$. Since $f^{\prime \prime}(x)>0$ for all x, the given function is concave upward.
[4] Given function $f(x)=\frac{x^{2}+4}{4-x^{2}}$. Differentiating with respect to x we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(4-x^{2}\right) \frac{d}{d x}\left[x^{2}+4\right]-\left(x^{2}+4\right) \frac{d}{d x}\left[4-x^{2}\right]}{\left(4-x^{2}\right)^{2}} \\
& =\frac{2 x\left(4-x^{2}\right)+2 x\left(x^{2}+4\right)}{\left(4-x^{2}\right)^{2}} \\
& =\frac{8 x-2 x^{2}+2 x^{2}+8 x}{\left(4-x^{2}\right)^{2}} \\
& =\frac{16 x}{\left(4-x^{2}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(4-x^{2}\right)^{2} \frac{d}{d x}[16 x]-16 x \frac{d}{d x}\left[\left(4-x^{2}\right)^{2}\right]}{\left(4-x^{2}\right)^{4}} \\
& =\frac{16\left(4-x^{2}\right)^{2}-16 x\left[2\left(4-x^{2}\right)\right] \frac{d}{d x}\left[\left(4-x^{2}\right)\right]}{\left(4-x^{2}\right)^{4}} \\
& =\frac{16\left(4-x^{2}\right)^{2}+64 x^{2}\left(4-x^{2}\right)}{\left(4-x^{2}\right)^{4}} \\
& \left.=\frac{16\left(4-x^{2}\right)+64 x^{2}}{\left(4-x^{2}\right)^{3}} \quad \text { (dividing both numerator and denominator by }\left(4-x^{2}\right)\right) \\
& =\frac{64-16 x^{2}+64 x^{2}}{\left(4-x^{2}\right)^{3}} \\
& =\frac{64+48 x^{2}}{\left(4-x^{2}\right)^{3}} \\
& =\frac{16\left(4+3 x^{2}\right)}{\left(4-x^{2}\right)^{3}}
\end{aligned}
$$

Notice that $f^{\prime \prime}(x)=0$ has no solution, but $f^{\prime \prime}(x)$ is undefined when $4-x^{2}=0$ i.e., $x= \pm 2$. We have the following

Test Interval	$-\infty<x<-2$	$-2<x<2$	$2<x<\infty$
Test value	$x=-3$	$x=0$	$x=3$
Sign of $f^{\prime \prime}(x)$	$f^{\prime \prime}(-3)<0$	$f^{\prime \prime}(0)=1>0$	$f^{\prime \prime}(3)<0$
Conclusion	Concave downward	Concave upward	Concave downward

[11] Given function $f(x)=x^{3}-5 x^{2}+7 x$. Differentiating twice with respect to x we obtain $f^{\prime}(x)=3 x^{2}-10 x+7$ and $f^{\prime \prime}(x)=6 x-10$. To find critical points we solve $f^{\prime}(x)=0$.

$$
\begin{array}{ll}
& 3 x^{2}-10 x+7=0 \\
\text { i.e., } & 3 x^{2}-3 x-7 x+7=0 \\
\text { i.e., } & 3 x(x-1)-7(x-1)=0 \\
\text { i.e., } & (3 x-7)(x-1)=0 \\
\text { i.e., } & x=\frac{7}{3}, 1
\end{array}
$$

We compute $f^{\prime \prime}\left(\frac{7}{3}\right)=6 \cdot \frac{7}{3}-10=14-10=4>0$. Therefore $x=\frac{7}{3}$ is a relative minima. On the other hand $f^{\prime \prime}(1)=6-10=-4<0$. Therefore $x=1$ is a relative maxima.
[16] Given function $f(x)=\sqrt{4-x^{2}}$. Differentiating twice with respect to x we get

$$
\begin{align*}
f^{\prime}(x) & =\frac{d}{d x}\left[\sqrt{4-x^{2}}\right] \\
& =\frac{d}{d x}\left[\left(4-x^{2}\right)^{\frac{1}{2}}\right] \\
& =\frac{1}{2}\left(4-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left[4-x^{2}\right] \\
& =\frac{1}{2}\left(4-x^{2}\right)^{-\frac{1}{2}}(-2 x) \\
& =-\frac{x}{\sqrt{4-x^{2}}}, \tag{1}
\end{align*}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\frac{\sqrt{4-x^{2}} \frac{d}{d x}[x]-x \frac{d}{d x}\left[\sqrt{4-x^{2}}\right]}{4-x^{2}} \\
& =-\frac{\sqrt{4-x^{2}}-x\left[-\frac{x}{\sqrt{4-x^{2}}}\right]}{4-x^{2}} \quad \text { (using the equation (1)) } \\
& =-\frac{\sqrt{4-x^{2}}+\left[\frac{x^{2}}{\sqrt{4-x^{2}}}\right]}{4-x^{2}} \\
& =-\frac{\left(4-x^{2}\right)+x^{2}}{\left(4-x^{2}\right)^{\frac{3}{2}}} \quad \text { (multiplying both numerator and denominator by } \sqrt{4-x^{2}} \text {) } \\
& =-\frac{4}{\left(4-x^{2}\right)^{\frac{3}{2}}} .
\end{aligned}
$$

Now solving the equation $f^{\prime}(x)=0$ we obtain $x=0$. Also we notice that $f^{\prime}(x)$ is undefined for $4-x^{2}=0$ i.e., $x= \pm 2$, but $f(\pm 2)=0$ i.e., $f(x)$ is well defined for $x= \pm 2$. Therefore we have three critical points $x=0, \pm 2$.

Now we want to use second derivative test. Compute $f^{\prime \prime}(0)=-\frac{1}{2}>0$, therefore $x=0$ is a relative maxima.

But notice that $f^{\prime \prime}(-2)$ and $f^{\prime \prime}(2)$ are undefined. So we can not use the second derivative test for the critical points $x= \pm 2$. We have to use first derivative test for $x= \pm 2$.

Test Interval	$-2<x<0$	$0<x<2$
Test value	$x=-1$	$x=1$
Sign of $f^{\prime}(x)$	$f^{\prime}(-1)=\frac{1}{\sqrt{3}}>0$	$f^{\prime}(1)=-\frac{1}{\sqrt{3}}<0$
Conclusion	Increasing	decreasing

[Note: We have excluded the test intervals $-\infty<x<-2$ and $2<x<\infty$ because the function $f(x)=\sqrt{4-x^{2}}$ is not defined in those intervals. Notice that $\sqrt{4-x^{2}}$ is undefined for $4-x^{2}<0$ i.e., $x>2$ and $x<-2$].

Since we have no information on the intervals $-\infty<x<-2$ and $2<x<\infty$, we can not apply the first derivative test, and we have no conclusion about $x= \pm 2$.
[21] Given function $f(x)=5+3 x^{2}-x^{3}$. Differentiating with respect to x we have $f^{\prime}(x)=6 x-3 x^{2}$ and $f^{\prime \prime}(x)=6-6 x$. To find critical points we solve $f^{\prime}(x)=0$. Which gives us

$$
\begin{array}{ll}
& 6 x-3 x^{2}=0 \\
\text { i.e., } & 3 x(2-x)=0 \\
\text { i.e., } & x=0,2 .
\end{array}
$$

Notice that $f^{\prime \prime}(0)=6>0$ and $f^{\prime \prime}()=6-12=-6<0$. Therefore by second derivative test, $x=0$ is a relative minima and $x=2$ is a relative maxima.
[23] Since the function is increasing, $f^{\prime}(x)>0$ on the interval $(0,2)$. We also notice that the function is concave upward on the interval $(0,2)$. Therefore $f^{\prime \prime}(x)>0$ on the interval $(0,2)$.
[26] The function is decreasing on the interval (0,2). Therefore $f^{\prime}(x)<0$ on $(0,2)$. Since the graph is concave upward, $f^{\prime \prime}(x)>0$ on the interval $(0,2)$.
[30] Given function $f(x)=x^{4}-18 x^{2}+5$. Differentiating twice with respect to x we have $f^{\prime}(x)=4 x^{3}-36 x$ and $f^{\prime \prime}(x)=12 x^{2}-36=12\left(x^{2}-3\right)$. To determine the test intervals we solve the equation $f^{\prime \prime}(x)=0$

$$
\begin{array}{ll}
& 12\left(x^{2}-3\right)=0 \\
\text { i.e., } & x^{2}-3=0 \\
\text { i.e., } & x^{2}=3 \\
\text { i.e., } & x= \pm \sqrt{3} .
\end{array}
$$

Notice that $f^{\prime \prime}(x)$ is well defined everywhere. Therefore we have the following

Test Intervals	$-\infty<x<-\sqrt{3}$	$-\sqrt{3}<x<\sqrt{3}$	$\sqrt{3}<x<\infty$
Test Values	$x=-4$	$x=0$	$x=4$
Sign of $f^{\prime \prime}(x)$	$f^{\prime \prime}(-4)=156>0$	$f^{\prime \prime}(0)=-36<0$	$f^{\prime \prime}(4)=156>0$
Conclusion	Concave upward	Concave downward	Concave upward

We notice that concavity of the given function changes at $x=-\sqrt{3}$ (function is concave upward on the left side of $x=-\sqrt{3}$ and concave downward on the right hand side of $x=-\sqrt{3}$). Therefore $x=-\sqrt{3}$ is a point of inflection. For the similar reason, $x=\sqrt{3}$ is also a point of inflection.

Quiz 5: The quiz problem was $f(x)=x^{4}-24 x^{2}+7$. This is similar as problem 30. The answer of the quiz problem is $x= \pm 2$.
[33] Given function $h(x)=(x-2)^{3}(x-1)$. Differentiating twice we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[(x-2)^{3}\right](x-1)+(x-2)^{3} \frac{d}{d x}[(x-1)] \\
& =3(x-2)^{2}(x-1)+(x-2)^{3} \\
& =(x-2)^{2}[3(x-1)+(x-2)] \\
& =(x-2)^{2}(4 x-5)
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[(x-2)^{2}\right](4 x-5)+(x-2)^{2} \frac{d}{d x}[(4 x-5)] \\
& =2(x-2)(4 x-5)+4(x-2)^{2} \\
& =2(x-2)[(4 x-5)+2(x-2)] \\
& =2(x-2)(6 x-9) .
\end{aligned}
$$

To find the possible points of inflection we solve the equation $f^{\prime \prime}(x)=0$. Solving $f^{\prime \prime}(x)=0$, we obtain $x=2$ and $x=\frac{9}{6}=\frac{3}{2}$. Since $f^{\prime \prime}(x)$ is not undefined anywhere, we have

Test Intervals	$-\infty<x<\frac{3}{2}$	$\frac{3}{2}<x<2$	$2<x<\infty$
Test Values	$x=0$	$x=\frac{7}{4}$	$x=3$
Sign of $f^{\prime \prime}(x)$	$f^{\prime \prime}(0)=36>0$	$f^{\prime \prime}\left(\frac{7}{4}\right)=-\frac{3}{2}<0$	$f^{\prime \prime}(3)=18>0$
Conclusion	Concave upward	Concave downward	Concave upward

Since concavity of the function changes at $x=\frac{3}{2}$ and $x=2$, both $x=\frac{3}{2}$ and $x=2$ are points of inflection.

