Section 3.3

[1] Given function $f(x) = x^2 - x - 2$. Differentiating twice with respect to x we get f'(x) = 2x - 1 and f''(x) = 2. Since f''(x) > 0 for all x, the given function is concave upward.

[4] Given function $f(x) = \frac{x^2+4}{4-x^2}$. Differentiating with respect to x we get

$$f'(x) = \frac{(4-x^2)\frac{d}{dx}[x^2+4] - (x^2+4)\frac{d}{dx}[4-x^2]}{(4-x^2)^2}$$
$$= \frac{2x(4-x^2) + 2x(x^2+4)}{(4-x^2)^2}$$
$$= \frac{8x - 2x^2 + 2x^2 + 8x}{(4-x^2)^2}$$
$$= \frac{16x}{(4-x^2)^2},$$

and

$$f''(x) = \frac{(4-x^2)^2 \frac{d}{dx} [16x] - 16x \frac{d}{dx} [(4-x^2)^2]}{(4-x^2)^4}$$

$$= \frac{16(4-x^2)^2 - 16x [2(4-x^2)] \frac{d}{dx} [(4-x^2)]}{(4-x^2)^4}$$

$$= \frac{16(4-x^2)^2 + 64x^2(4-x^2)}{(4-x^2)^4}$$

$$= \frac{16(4-x^2) + 64x^2}{(4-x^2)^3} \quad \text{(dividing both numerator and denominator by } (4-x^2))$$

$$= \frac{64 - 16x^2 + 64x^2}{(4-x^2)^3}$$

$$= \frac{64 + 48x^2}{(4-x^2)^3}$$

$$= \frac{16(4+3x^2)}{(4-x^2)^3}.$$

Notice that f''(x) = 0 has no solution, but f''(x) is undefined when $4 - x^2 = 0$ i.e., $x = \pm 2$. We have the following

Test Interval	$-\infty < x < -2$	-2 < x < 2	$2 < x < \infty$
Test value	x = -3	x = 0	x = 3
Sign of $f''(x)$	f''(-3) < 0	f''(0) = 1 > 0	f''(3) < 0
Conclusion	Concave downward	Concave upward	Concave downward

[11] Given function $f(x) = x^3 - 5x^2 + 7x$. Differentiating twice with respect to x we obtain $f'(x) = 3x^2 - 10x + 7$ and f''(x) = 6x - 10. To find critical points we solve f'(x) = 0.

$$3x^{2} - 10x + 7 = 0$$

i.e.,
$$3x^{2} - 3x - 7x + 7 = 0$$

i.e.,
$$3x(x - 1) - 7(x - 1) = 0$$

i.e.,
$$(3x - 7)(x - 1) = 0$$

i.e.,
$$x = \frac{7}{3}, 1.$$

We compute $f''\left(\frac{7}{3}\right) = 6 \cdot \frac{7}{3} - 10 = 14 - 10 = 4 > 0$. Therefore $x = \frac{7}{3}$ is a relative minima. On the other hand f''(1) = 6 - 10 = -4 < 0. Therefore x = 1 is a relative maxima.

[16] Given function $f(x) = \sqrt{4 - x^2}$. Differentiating twice with respect to x we get

$$f'(x) = \frac{d}{dx} [\sqrt{4 - x^2}]$$

= $\frac{d}{dx} [(4 - x^2)^{\frac{1}{2}}]$
= $\frac{1}{2} (4 - x^2)^{\frac{1}{2} - 1} \frac{d}{dx} [4 - x^2]$
= $\frac{1}{2} (4 - x^2)^{-\frac{1}{2}} (-2x)$
= $-\frac{x}{\sqrt{4 - x^2}},$ (1)

and

$$f''(x) = -\frac{\sqrt{4 - x^2} \frac{d}{dx} [x] - x \frac{d}{dx} [\sqrt{4 - x^2}]}{4 - x^2}$$

= $-\frac{\sqrt{4 - x^2} - x \left[-\frac{x}{\sqrt{4 - x^2}} \right]}{4 - x^2}$ (using the equation (1))
= $-\frac{\sqrt{4 - x^2} + \left[\frac{x^2}{\sqrt{4 - x^2}} \right]}{4 - x^2}$
= $-\frac{(4 - x^2) + x^2}{(4 - x^2)^{\frac{3}{2}}}$ (multiplying both numerator and denominator by $\sqrt{4 - x^2}$)
= $-\frac{4}{(4 - x^2)^{\frac{3}{2}}}$.

Now solving the equation f'(x) = 0 we obtain x = 0. Also we notice that f'(x) is undefined for $4 - x^2 = 0$ i.e., $x = \pm 2$, but $f(\pm 2) = 0$ i.e., f(x) is well defined for $x = \pm 2$. Therefore we have three critical points $x = 0, \pm 2$. Now we want to use second derivative test. Compute $f''(0) = -\frac{1}{2} > 0$, therefore x = 0 is a relative maxima.

But notice that f''(-2) and f''(2) are undefined. So we can not use the second derivative test for the critical points $x = \pm 2$. We have to use first derivative test for $x = \pm 2$.

Test Interval	-2 < x < 0	0 < x < 2
Test value	x = -1	x = 1
Sign of $f'(x)$	$f'(-1) = \frac{1}{\sqrt{3}} > 0$	$f'(1) = -\frac{1}{\sqrt{3}} < 0$
Conclusion	Increasing	decreasing

[Note: We have excluded the test intervals $-\infty < x < -2$ and $2 < x < \infty$ because the function $f(x) = \sqrt{4 - x^2}$ is not defined in those intervals. Notice that $\sqrt{4 - x^2}$ is undefined for $4 - x^2 < 0$ i.e., x > 2 and x < -2].

Since we have no information on the intervals $-\infty < x < -2$ and $2 < x < \infty$, we can not apply the first derivative test, and we have no conclusion about $x = \pm 2$.

[21] Given function $f(x) = 5 + 3x^2 - x^3$. Differentiating with respect to x we have $f'(x) = 6x - 3x^2$ and f''(x) = 6 - 6x. To find critical points we solve f'(x) = 0. Which gives us

$$6x - 3x^{2} = 0$$

i.e., $3x(2 - x) = 0$
i.e., $x = 0, 2$.

Notice that f''(0) = 6 > 0 and f''() = 6 - 12 = -6 < 0. Therefore by second derivative test, x = 0 is a relative minima and x = 2 is a relative maxima.

[23] Since the function is increasing, f'(x) > 0 on the interval (0, 2). We also notice that the function is concave upward on the interval (0, 2). Therefore f''(x) > 0 on the interval (0, 2).

[26] The function is decreasing on the interval (0,2). Therefore f'(x) < 0 on (0,2). Since the graph is concave upward, f''(x) > 0 on the interval (0,2).

[30] Given function $f(x) = x^4 - 18x^2 + 5$. Differentiating twice with respect to x we have $f'(x) = 4x^3 - 36x$ and $f''(x) = 12x^2 - 36 = 12(x^2 - 3)$. To determine the test intervals we solve the equation f''(x) = 0

$$12(x^{2} - 3) = 0$$

i.e., $x^{2} - 3 = 0$
i.e., $x^{2} = 3$
i.e., $x = \pm \sqrt{3}$.

Test Intervals	$-\infty < x < -\sqrt{3}$	$-\sqrt{3} < x < \sqrt{3}$	$\sqrt{3} < x < \infty$
Test Values	x = -4	x = 0	x = 4
Sign of $f''(x)$	f''(-4) = 156 > 0	f''(0) = -36 < 0	f''(4) = 156 > 0
Conclusion	Concave upward	Concave downward	Concave upward

Notice that f''(x) is well defined everywhere. Therefore we have the following

We notice that concavity of the given function changes at $x = -\sqrt{3}$ (function is concave upward on the left side of $x = -\sqrt{3}$ and concave downward on the right hand side of $x = -\sqrt{3}$). Therefore $x = -\sqrt{3}$ is a point of inflection. For the similar reason, $x = \sqrt{3}$ is also a point of inflection.

Quiz 5: The quiz problem was $f(x) = x^4 - 24x^2 + 7$. This is similar as problem 30. The answer of the quiz problem is $x = \pm 2$.

[33] Given function $h(x) = (x-2)^3(x-1)$. Differentiating twice we get

$$f'(x) = \frac{d}{dx}[(x-2)^3](x-1) + (x-2)^3\frac{d}{dx}[(x-1)]$$

= $3(x-2)^2(x-1) + (x-2)^3$
= $(x-2)^2[3(x-1) + (x-2)]$
= $(x-2)^2(4x-5),$

and

$$f''(x) = \frac{d}{dx}[(x-2)^2](4x-5) + (x-2)^2\frac{d}{dx}[(4x-5)]$$

= 2(x-2)(4x-5) + 4(x-2)^2
= 2(x-2)[(4x-5) + 2(x-2)]
= 2(x-2)(6x-9).

To find the possible points of inflection we solve the equation f''(x) = 0. Solving f''(x) = 0, we obtain x = 2 and $x = \frac{9}{6} = \frac{3}{2}$. Since f''(x) is not undefined anywhere, we have

Test Intervals	$-\infty < x < \frac{3}{2}$	$\frac{3}{2} < x < 2$	$2 < x < \infty$
Test Values	x = 0	$x = \frac{7}{4}$	x = 3
Sign of $f''(x)$	f''(0) = 36 > 0	$f''\left(\frac{7}{4}\right) = -\frac{3}{2} < 0$	f''(3) = 18 > 0
Conclusion	Concave upward	Concave downward	Concave upward

Since concavity of the function changes at $x = \frac{3}{2}$ and x = 2, both $x = \frac{3}{2}$ and x = 2 are points of inflection.