Section 3.2
[1] Given function $f(x)=-2 x^{2}+4 x+3$. Differentiating with respect to x we obtain

$$
f^{\prime}(x)=-4 x+4
$$

Solving $f^{\prime}(x)=0$ we get $x=1$. $f^{\prime}(x)$ is well defined for all real numbers. Therefore the only critical point is $x=1$.

Test intervals	$-\infty<x<1$	$1<x<\infty$
Test points	$x=0$	$x=2$
Sign of $f^{\prime}(x)$	$f^{\prime}(0)=4>0$	$f^{\prime}(2)=-4<0$
Conclusion	Increasing	Decreasing

By first derivative test, $x=1$ is a relative maxima.
[4] $f(x)=-4 x^{2}+4 x+1$. Differentiating with respect to x we obtain $f^{\prime}(x)=-8 x+4$. Solving $f^{\prime}(x)=0$ we have $x=\frac{1}{2}$. Since $f^{\prime}(x)$ is well defined for all real numbers, the only critical point is $x=\frac{1}{2}$.

Test intervals	$-\infty<x<\frac{1}{2}$	$\frac{1}{2}<x<\infty$
Test points	$x=0$	$x=1$
Sign of $f^{\prime}(x)$	$f^{\prime}(0)=4>0$	$f^{\prime}(1)=-4<0$
Conclusion	Increasing	Decreasing

By first derivative test, $x=\frac{1}{2}$ is a relative maxima.
[7] $h^{\prime}(x)=-(x+4)^{3}$. Differentiating with respect to x we have $h^{\prime}(x)=-3(x+4)^{2}$. Solving $f^{\prime}(x)=0$ we get $x=-4$. Since $f^{\prime}(x)$ is well defined for all real numbers, there is only one critical point $x=-4$.

Test intervals	$-\infty<x<-4$	$-4<x<\infty$
Test points	$x=-5$	$x=-3$
Sign of $f^{\prime}(x)$	$f^{\prime}(-5)=-3<0$	$f^{\prime}(0)=-3<0$
Conclusion	Decreasing	Decreasing

Since $f^{\prime}(x)$ has same sign on left and right side of $x=-4$, therefore $x=-4$ is neither a relative maxima nor a relative minima.
[12] $f(x)=x^{4}-12 x^{3}$. Differentiating with respect to x we get $f^{\prime}(x)=4 x^{3}-36 x^{2}$. To solve $f^{\prime}(x)=0$

$$
\begin{array}{ll}
& 4 x^{3}-36 x^{2}=0 \\
\text { i.e., } & x^{3}-9 x^{2}=0 \\
\text { i.e., } & x^{2}(x-9)=0 \\
\text { i.e., } & x=0,9 .
\end{array}
$$

Since $f^{\prime}(x)$ is well defined for all real numbers, $x=0,9$ are the only critical points.

Test intervals	$-\infty<x<0$	$0<x<9$	$9<x<\infty$
Test points	$x=-1$	$x=1$	$x=10$
Sign of $f^{\prime}(x)$	$f^{\prime}(-1)=-40<0$	$f^{\prime}(1)=-32<0$	$f^{\prime}(10)=400>0$
Conclusion	Decreasing	Decreasing	Increasing

By first derivative test, $x=0$ is nether a relative maxima nor a relative minima, and $x=9$ is a relative minima.
[16] $f(x)=x+\frac{1}{x}$. Differentiating with respect to x we have $f^{\prime}(x)=1-\frac{1}{x^{2}}$. To solve $f^{\prime}(x)=0$

$$
\begin{array}{ll}
& 1-\frac{1}{x^{2}}=0 \\
\text { i.e., } & 1=\frac{1}{x^{2}} \\
\text { i.e., } & x^{2}=1 \\
\text { i.e., } & x= \pm 1 .
\end{array}
$$

Also notice that $f^{\prime}(x)$ is undefined for $x=0$. But $f(x)$ is also undefined for $x=0$. Therefore $x=0$ is not a critical point, and we have two critical points $x= \pm 1$.

Test intervals	$-\infty<x<-1$	$-1<x<1$	$1<x<\infty$
Test points	$x=-2$	$x=\frac{1}{2}$	$x=2$
Sign of $f^{\prime}(x)$	$f^{\prime}(-2)=\frac{3}{4}>0$	$f^{\prime}\left(\frac{1}{2}\right)=-3<0$	$f^{\prime}(2)=\frac{3}{4}>0$
Conclusion	Increasing	Decreasing	Increasing

By first derivative test, $x=-1$ is a relative maxima, and $x=1$ is a relative minima.

Remark: The function $f(x)=x+\frac{1}{x}$ is undefined at $x=0$. So more precisely, we should not consider the interval $-1<x<1$ as a test interval. Instead we should consider two intervals $-1<x<0$ and $0<x<1$ (to exclude $x=0$ from our consideration). But that does not change the answer.
[18] $h(x)=\frac{4}{x^{2}+1}$. Differentiating with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{4}{x^{2}+1}\right] \\
& =\frac{d}{d x}\left[4\left(x^{2}+1\right)^{-1}\right] \\
& =4(-1)\left(x^{2}+1\right)^{-2} \frac{d}{d x}\left[x^{2}+1\right] \\
& =-4 \frac{1}{\left(x^{2}+1\right)^{2}} \cdot 2 x \\
& =\frac{-8 x}{\left(x^{2}+1\right)^{2}} .
\end{aligned}
$$

Solving $f^{\prime}(x)=0$ we get $x=0$. Since $x^{2}+1 \neq 0$ for all real numbers. Therefore $f^{\prime}(x)$ is well defined for all real numbers. Hence the only critical point is $x=0$.

Test intervals	$-\infty<x<0$	$0<x<\infty$
Test points	$x=-1$	$x=1$
Sign of $h^{\prime}(x)$	$f^{\prime}(-1)=2>0$	$f^{\prime}(1)=-2<0$
Conclusion	Increasing	Decreasing

By first derivative test $x=0$ is a relative maxima.
[25] Given function $h(s)=\frac{1}{3-s}$. Differentiating with respect s we have

$$
\begin{aligned}
h^{\prime}(s) & =\frac{d}{d s}\left[\frac{1}{3-s}\right] \\
& =\frac{d}{d s}\left[(3-s)^{-1}\right] \\
& =-(3-s)^{-2} \frac{d}{d s}[3-s] \\
& =-(3-s)^{-2}[0-1] \\
& =(3-s)^{-2} \\
& =\frac{1}{(3-s)^{2}} .
\end{aligned}
$$

Note that there is no solution of $h^{\prime}(s)=0$. Also notice that both $h(s)$ and $h^{\prime}(s)$ are undefined for $s=3$. Therefore $s=3$ is not a critical number. Consequently, there is no critical number (we don't have to check any relative maxima or minima).

We are looking at the function $h(s)$ restricted on the interval $[0,2]$.

s value	End point: $s=0$	End point: $s=2$
$h(s)$	$h(0)=\frac{1}{3}$	$h(2)=1$
Conclusion	Absolute Minimum	Absolute Maximum

[30] $g(x)=4\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)$. Differentiating with respect to x we have

$$
\begin{aligned}
g^{\prime}(x) & =4 \frac{d}{d x}\left[1+x^{-1}+x^{-2}\right] \\
& =4\left[-x^{-2}-2 x^{-3}\right] \\
& =-4\left[x^{-2}+2 x^{-3}\right] \\
& =-4\left[\frac{1}{x^{2}}+\frac{2}{x^{3}}\right] \\
& =-4\left[\frac{x+2}{x^{3}}\right]
\end{aligned}
$$

Solving the equation $g^{\prime}(x)=0$ we have $x=-2$. Notice that both $g(x)$ and $g^{\prime}(x)$ are undefined for $x=0$. Therefore $x=0$ is not a critical point, and we have only one critical point $x=-2$ inside the interval $[-4,5]$.

x value	End point: $x=-4$	Critical point: $x=-2$	End point: $x=5$
$g(x)$	$g(-4)=\frac{13}{4}$	$g(-2)=3$	$g(5)=\frac{124}{25}$
Conclusion	None	Absolute Minimum	Absolute Maximum

[37] $f(x)=\frac{2 x}{x^{2}+4}$. Differentiating with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+4\right) \frac{d}{d x}[2 x]-2 x \frac{d}{d x}\left[x^{2}+4\right]}{\left(x^{2}+4\right)^{2}} \\
& =\frac{2\left(x^{2}+4\right)-4 x^{2}}{\left(x^{2}+4\right)^{2}} \\
& =\frac{8-2 x^{2}}{\left(x^{2}+4\right)^{2}} .
\end{aligned}
$$

To solve $f^{\prime}(x)=0$

$$
\begin{array}{ll}
& \frac{8-2 x^{2}}{\left(x^{2}+4\right)^{2}}=0 \\
\text { i.e., } & 8-2 x^{2}=0 \\
\text { i.e., } & 4-x^{2}=0 \\
\text { i.e., } & x^{2}=4 \\
\text { i.e., } & x= \pm 2 .
\end{array}
$$

Notice that $f^{\prime}(x)$ is well defined for all real numbers. Therefore there are only two critical points $x= \pm 2$.

x points	End point: $x=0$	Critical number: $x=-2$	Critical number: $x=2$	$\lim _{x \rightarrow \infty} f(x)$
$f(x)$	$f(0)=0$	$f(-2)=-\frac{1}{2}$	$f(2)=\frac{1}{2}$	$0(\dagger)$
Conclusion	None	Absolute Minimum	Absolute Maximum	None

\dagger Clarification: Why $\lim _{x \rightarrow \infty} f(x)=0$?

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x}{x^{2}+4} & =\lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1+\frac{4}{x^{2}}} \quad \text { (dividing top and bottom by } x^{2} \text {) } \\
& =\frac{\lim _{x \rightarrow \infty}\left[\frac{2}{x}\right]}{\lim _{x \rightarrow \infty}\left[1+\frac{4}{x^{2}}\right]} \\
& =\frac{0}{1+0} \\
& =0
\end{aligned}
$$

