Section 3.1

[1] $f(x)=\frac{x^{2}}{x^{2}+4}$. Differentiating with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{x^{2}}{x^{2}+4}\right] \\
& =\frac{\left(x^{2}+4\right) \frac{d}{d x}\left[x^{2}\right]-x^{2} \frac{d}{d x}\left[x^{2}+4\right]}{\left(x^{2}+4\right)^{2}} \\
& =\frac{2 x\left(x^{2}+4\right)-x^{2}[2 x+0]}{\left(x^{2}+4\right)^{2}} \\
& =\frac{2 x^{3}+8 x-2 x^{3}}{\left(x^{2}+4\right)^{2}} \\
& =\frac{8 x}{\left(x^{2}+4\right)^{2}} .
\end{aligned}
$$

Given points are $(0,0),\left(1, \frac{1}{5}\right)$, and $\left(-1, \frac{1}{5}\right)$. Values of $f^{\prime}(x)$ at those points are

$$
\begin{array}{r}
f^{\prime}(0)=\frac{0}{(0+4)^{2}}=\frac{0}{16}=0 \\
f^{\prime}(1)=\frac{8}{(1+4)^{2}} \\
=\frac{8}{5^{2}}=\frac{8}{25}
\end{array}
$$

and

$$
\begin{aligned}
f^{\prime}(-1) & =\frac{-8}{(1+4)^{2}} \\
& =\frac{-8}{5^{2}}=-\frac{8}{25} .
\end{aligned}
$$

[4] Given function $f(x)=-3 x \sqrt{x+1}$. Differentiating with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[-3 x \sqrt{x+1}] \\
& =\frac{d}{d x}[-3 x] \sqrt{x+1}-3 x \frac{d}{d x}[\sqrt{x+1}] \\
& =-3 \sqrt{x+1}-3 x \frac{d}{d x}\left[(x+1)^{1 / 2}\right] \\
& =-3 \sqrt{x+1}-3 x \times \frac{1}{2}(x+1)^{\frac{1}{2}-1} \frac{d}{d x}[x+1] \\
& =-3 \sqrt{x+1}-\frac{3 x}{2 \sqrt{x+1}} .
\end{aligned}
$$

Given points are $(-1,0),\left(-\frac{2}{3}, \frac{2 \sqrt{3}}{3}\right)$, and $(0,0)$. Values of $f^{\prime}(x)$ at those points are

$$
\begin{aligned}
f^{\prime}(-1) & =3 \sqrt{-1+1}-\frac{3(-1)}{2 \sqrt{-1+1}} \\
& =3 \times 0+\frac{3}{2 \times 0} \\
& =\frac{3}{0}
\end{aligned}
$$

Since $\frac{3}{0}$ is undefined, $f^{\prime}(0)$ is undefined.

$$
\begin{aligned}
f^{\prime}\left(-\frac{2}{3}\right) & =-3 \sqrt{-\frac{2}{3}+1}-\frac{3 \times\left(-\frac{2}{3}\right)}{2 \sqrt{-\frac{2}{3}+1}} \\
& =-3 \sqrt{\frac{1}{3}}+\frac{2}{2 \sqrt{\frac{1}{3}}} \\
& =-3 \cdot \frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}}} \\
& =-\sqrt{3}+\sqrt{3} \\
& =0 . \\
f^{\prime}(0) & =-3 \sqrt{0+1}-\frac{0}{2 \sqrt{0+1}} \\
& =-3-\frac{0}{2} \\
& =-3 .
\end{aligned}
$$

[7] $f(x)=x^{4}-2 x^{2}$. First of all, we have to find the critical points. Differentiating $f(x)$ with respect to x we have

$$
f^{\prime}(x)=4 x^{3}-4 x .
$$

To find critical points we solve

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\text { i.e., } & 4 x^{3}-4 x=0 \\
\text { i.e., } & x^{3}-x=0 \\
\text { i.e., } & x\left(x^{2}-1\right)=0 \\
\text { i.e., } & x=0, x^{2}-1=0 \\
\text { i.e., } & x=0, x^{2}=1 \\
\text { i.e., } & x=0, x= \pm 1 .
\end{array}
$$

Also notice that $f^{\prime}(x)$ is defined everywhere. Therefore $x=0, \pm 1$. We do the following to determine the open intervals on which the function is increasing or decreasing

Test intervals	$-\infty<x<-1$	$-1<x<0$	$0<x<1$	$1<x<\infty$
Text points	$x=-2$	$x=-\frac{1}{2}$	$x=\frac{1}{2}$	$x=2$
Sign of $f^{\prime}(x)$	$f^{\prime}(-2)=-24<0$	$f^{\prime}\left(-\frac{1}{2}\right)=\frac{3}{2}>0$	$f^{\prime}\left(\frac{1}{2}\right)=-\frac{3}{2}<0$	$f^{\prime}(2)=24>0$
Conclusion	Decreasing	Increasing	Decreasing	Increasing

[8] Given function $f(x)=\frac{x^{2}}{x+1}$. Differentiating with respect to x we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{x^{2}}{x+1}\right] \\
& =\frac{(x+1) \frac{d}{d x}\left[x^{2}\right]-x^{2} \frac{d}{d x}[x+1]}{(x+1)^{2}} \\
& =\frac{2 x(x+1)-x^{2}}{(x+1)^{2}} \\
& =\frac{2 x^{2}+2 x-x^{2}}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x}{(x+1)^{2}} .
\end{aligned}
$$

To solve the equation $f^{\prime}(x)=0$ we have

$$
\begin{array}{ll}
& \frac{x^{2}+2 x}{(x+1)^{2}}=0 \\
\text { i.e., } & x^{2}+2 x=0 \\
\text { i.e., } & x(x+2)=0 \\
\text { i.e., } & x=0,-2 .
\end{array}
$$

Notice that $f^{\prime}(x)$ is undefined for $x=-1$, because $f^{\prime}(-1)=\frac{1-2}{0}=\frac{-1}{0}$. But $f(x)$ is also undefined for $x=-1$. Therefore $x=-1$ is not a critical number, and the only critical numbers are $x=0,-2$.

Now we proceed as following.

Test intervals	$-\infty<x<-2$	$-2<x<0$	$0<x<\infty$
Test points	$x=-3$	$x=-\frac{1}{2}$	$x=1$
Sign of $f^{\prime}(x)$	$f^{\prime}(-3)=\frac{3}{4}>0$	$f^{\prime}\left(-\frac{1}{2}\right)=-3<0$	$f^{\prime}(1)=\frac{3}{4}>0$
Conclusion	Increasing	Decreasing	Increasing

[17] Given function $f(x)=\sqrt{x^{2}-1}$. Differentiating with respect to x we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(x^{2}-1\right)^{1 / 2}\right] \\
& =\frac{1}{2}\left(x^{2}-1\right)^{\frac{1}{2}-1} \frac{d}{d x}\left[x^{2}-1\right] \\
& =\frac{1}{2}\left(x^{2}-1\right)^{-\frac{1}{2}} \cdot 2 x \\
& =\frac{x}{\sqrt{x^{2}-1}} .
\end{aligned}
$$

Notice that there is no real solution of $f^{\prime}(x)=0$.
[Common mistake:

$$
\begin{aligned}
& \\
& \frac{x}{\sqrt{x^{2}-1}}=0 \\
& \text { i.e., } \quad x=0 .
\end{aligned}
$$

But if we plugin $x=0$ in $f^{\prime}(x)$ we get $f^{\prime}(0)=\frac{0}{\sqrt{-1}}$, which is not a real number. Because we have $\sqrt{\text { negative number.] }}$

Now we observe that $f^{\prime}(x)$ is undefined if

$$
\begin{array}{ll}
& \sqrt{x^{2}-1}=0 \\
\text { i.e., } & x^{2}-1=0 \\
\text { i.e., } & x^{2}=1 \\
\text { i.e., } & x= \pm 1 .
\end{array}
$$

We also notice that $f(\pm 1)=\sqrt{1-1}=0$ i.e., $f(x)$ is well defined for $x= \pm 1$. Therefore $x= \pm 1$ are critical points. Ideally the test intervals should be $-\infty<x<-1,-1<x<1$, and $1<x<\infty$. But the given function $f(x)=\sqrt{x^{2}-1}$ is undefined for $x^{2}-1<0$ (because negative number inside a square root is not allowed) i.e., for $-1<x<1$. So it does not make sense to talk about increasing or decreasing inside the interval $-1<x<1$. Therefore we have the following

Test intervals	$-\infty<x<-1$	$1<x<\infty$
Test points	$x=-2$	$x=2$
Sign of $f^{\prime}(x)$	$f^{\prime}(-2)=-\frac{2}{\sqrt{3}}<0$	$f^{\prime}(2)=\frac{2}{\sqrt{3}}>0$
Conclusion	Decreasing	Increasing

[18] the given function $f(x)=\sqrt{4-x^{2}}$. Differentiating with respect to x we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(4-x^{2}\right)^{1 / 2}\right] \\
& =\frac{1}{2}\left(4-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left[4-x^{2}\right] \\
& =\frac{1}{2}\left(4-x^{2}\right)^{-\frac{1}{2}}[-2 x] \\
& =-\frac{x}{\sqrt{4-x^{2}}} .
\end{aligned}
$$

to solve the equation $f^{\prime}(x)=0$ we have

$$
\begin{array}{ll}
& -\frac{x}{\sqrt{4-x^{2}}}=0 \\
\text { i.e., } & -x=0 \\
\text { i.e., } & x=0 .
\end{array}
$$

[Note that this problem is slightly different from the previous one. Plugging in $x=0$ in $f^{\prime}(x)$ we have $f^{\prime}(0)=-\frac{0}{\sqrt{4}}=-\frac{0}{2}=0$. Therefore $x=0$ is indeed a solution of $f^{\prime}(x)=0$]. We also notice that $f^{\prime}(x)$ is undefined for

$$
\begin{array}{ll}
& \sqrt{4-x^{2}}=0 \\
\text { i.e., } & 4-x^{2}=0 \\
\text { i.e., } & 4=x^{2} \\
\text { i.e., } & x= \pm 2 .
\end{array}
$$

Whereas $f(\pm 2)=\sqrt{4-4}=0$ i.e., $f(x)$ is well defined for $x= \pm 2$. Hence the critical points are $x=0, \pm 2$. Ideally the test intervals should be $-\infty<x<-2,-2<x<0,0<x<2$, and $2<x<\infty$. But observe that the given function $f(x)=\sqrt{4-x^{2}}$ is undefined for $4-x^{2}<0$ (because negative number inside a square root is not allowed) i.e., $4<x^{2}$ i.e., $2<x$ or $x<-2$. In other words the function is well defined if $4-x^{2} \geq 0$ i.e., if $x^{2} \leq 4$ i.e., if $-2 \leq x \leq 2$. Therefore it makes sense to talk about increasing or decreasing only when $-2 \leq x \leq 2$. Consequently we have the following

Test intervals	$-2<x<0$	$0<x<2$
Test points	$x=-1$	$x=1$
Sign of $f^{\prime}(x)$	$f^{\prime}(-1)=\frac{1}{\sqrt{3}}>0$	$f^{\prime}(1)=-\frac{1}{\sqrt{3}}<0$
Conclusion	Increasing	Decreasing

[23] Given function $f(x)=x \sqrt{x+1}$. Differentiating with respect to x we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[x \sqrt{x+1}] \\
& =\frac{d}{d x}[x] \sqrt{x+1}+x \frac{d}{d x}[\sqrt{x+1}] \\
& =\sqrt{x+1}+x \frac{1}{2}(x+1)^{-\frac{1}{2}} \frac{d}{d x}[x+1] \\
& =\sqrt{x+1}+\frac{x}{2 \sqrt{x+1}} .
\end{aligned}
$$

To find the critical points we solve

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\text { i.e., } & \sqrt{x+1}+\frac{x}{2 \sqrt{x+1}}=0 \\
\text { i.e., } & \sqrt{x+1}=-\frac{x}{2 \sqrt{x+1}} \\
\text { i.e., } & \sqrt{x+1} \cdot 2 \sqrt{x+1}=-x \\
\text { i.e., } & 2(x+1)=-x \\
\text { i.e., } & 2 x+2=-x \\
\text { i.e., } & 2 x+2+x=0 \\
\text { i.e., } & 3 x+2=0 \\
\text { i.e., } & x=-\frac{2}{3} .
\end{array}
$$

We also notice that $f^{\prime}(x)$ is undefined for $x=-1$ (because $f^{\prime}(-1)=\sqrt{-1+1}+\frac{-1}{2 \sqrt{-1+1}}=$ $\frac{-1}{0}$). Whereas $f(-1)=(-1) \cdot \sqrt{-1+1}=(-1) \times 0=0$ i.e., $f(x)$ is well defined for $x=-1$. Therefore $x=-1$ is also a critical point. Consequently, we have two critical points $x=-\frac{2}{3},-1$.

Ideally the test intervals should be $-\infty<x<-1,-1<x<-\frac{2}{3}$, and $-\frac{2}{3}<x<\infty$. But notice that the given function $f(x)=x \sqrt{x+1}$ is undefined for $x+1<0$ (because $\sqrt{\text { negative number }}$ is not allowed) i.e., $x<-1$. Therefore we have the following

Test intervals	$-1<x<-\frac{2}{3}$	$-\frac{2}{3}<x<\infty$
Test points	$x=-\frac{5}{6}$	$x=0$
Sign of $f^{\prime}(x)$	$f^{\prime}\left(-\frac{5}{6}\right)=-\frac{3}{2 \sqrt{6}}<0$	$f^{\prime}(0)=1>0$
Conclusion	Decreasing	Increasing

Alternative method
We have $f^{\prime}(x)=\sqrt{x+1}+\frac{x}{2 \sqrt{x+1}}$. We know that the function is increasing if $f^{\prime}(x)>0$
and decreasing if $f^{\prime}(x)<0$. Therefore the given function $f(x)=x \sqrt{x+1}$ is increasing if

$$
\begin{array}{ll}
& f^{\prime}(x)>0 \\
\text { i.e., } & \sqrt{x+1}+\frac{x}{2 \sqrt{x+1}}>0 \\
\text { i.e., } & \sqrt{x+1}>-\frac{x}{2 \sqrt{x+1}} \\
\text { i.e., } & 2(x+1)>-x \\
\text { i.e., } & 2 x+2+x>0 \\
\text { i.e., } & 3 x+2>0 \\
\text { i.e., } & 3 x>-2 \\
\text { i.e., } & x>-\frac{2}{3} .
\end{array}
$$

Therefore the function is increasing when $x>-\frac{2}{3}$. In other words, the function is increasing in the interval $-\frac{2}{3}<x<\infty$. Similarly the function is decreasing if

$$
\begin{array}{ll}
& f^{\prime}(x)<0 \\
\text { i.e., } & \sqrt{x+1}+\frac{x}{2 \sqrt{x+1}}<0 \\
\text { i.e., } & x<-\frac{2}{3}
\end{array}
$$

Therefore the function is decreasing in the interval $-\infty<x<-\frac{2}{3}$.
But we know that the function $f(x)=x \sqrt{x+1}$ is not defined for $x+1<0$ i.e., $x<-1$. Therefore it does not make sense to talk about increasing or decreasing when $x<-1$. Consequently the function is decreasing in the interval $-1<x<-\frac{2}{3}$ (not in the interval $-\infty<x<-\frac{2}{3}$).

Finally, the function is increasing in the interval $-\frac{2}{3}<x<\infty$ and decreasing in the interval $-1<x<-\frac{2}{3}$.

Remark: This alternative method can be used for any problem about increasing or decreasing function. There are a few advantages in this alternative method. We don't have to compute test interval, test point, and sign of $f^{\prime}(x)$ in each test interval.
[28] Given function $f(x)=\frac{x^{2}}{x^{2}+4}$. We compute

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{x^{2}}{x^{2}+4}\right] \\
& =\frac{\left(x^{2}+4\right) \frac{d}{d x}\left[x^{2}\right]-x^{2} \frac{d}{d x}\left[x^{2}+4\right]}{\left(x^{2}+4\right)^{2}} \\
& =\frac{2 x\left(x^{2}+4\right)-x^{2} \cdot 2 x}{\left(x^{2}+4\right)^{2}} \\
& =\frac{2 x^{3}+8 x-2 x^{3}}{\left(x^{2}+4\right)^{2}} \\
& =\frac{8 x}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

Solving the equation $f^{\prime}(x)=0$ we obtain $x=0$. Notice that since always $x^{2}+4 \neq 0$, $f^{\prime}(x)$ is defined everywhere. So, there is only one critical point, namely $x=0$. Also $f(x)$ is defined everywhere. Consequently, we have the following

Test intervals	$-\infty<x<0$	$0<x<\infty$
Test points	$x=-1$	$x=1$
Sign of $f^{\prime}(x)$	$f^{\prime}(-1)=-\frac{8}{25}<0$	$f^{\prime}(1)=\frac{8}{25}>0$
Conclusion	Decreasing	Increasing

[33] Given function

$$
f(x)= \begin{cases}3 x+1, & x \leq 1 \\ 5-x^{2}, & x>1\end{cases}
$$

Differentiating with respect to x we have

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
3, & x<1 \\
-2 x, & x>1
\end{array} \quad(\text { notice, I have written } x<1 \text { not } x \leq 1)\right.
$$

Solving $f^{\prime}(x)=0$ we obtain $x=0$ when $x>1$. But when x can not be 0 when $x>1$. Therefore there is no solution of $f^{\prime}(x)=0$. On the other hand $f^{\prime}(x)$ is undefined for $x=1$ but $f(x)$ is well defined for $x=1$. Therefore $x=1$ is the only critical point.

Test intervals	$-\infty<x<1$	$1<x<\infty$
Test points	$x=0$	$x=2$
Sign of $f^{\prime}(x)$	$f^{\prime}(0)=3>0$	$f^{\prime}(2)=-4<0$
Conclusion	Increasing	Decreasing

Remark: If a function is defined piecewise, then take the joining points as critical points (like $x=1$ in this problem)

Alternative method

We have

$$
\begin{aligned}
f^{\prime}(x) & =\left\{\begin{array}{cc}
3, & x<1 \\
-2 x, & x>1
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\text { positive }, & x<1 \\
\text { negative }, & x>1
\end{array}\right.
\end{aligned}
$$

Therefore the function is increasing in the interval $-\infty<x<1$ and decreasing in the interval $1<x<\infty$.

