Section 2.8

[1] Given equation $y=x^{2}-\sqrt{x}$. Differentiating both sides with respect to t we have

$$
\begin{align*}
\frac{d y}{d t} & =\frac{d}{d t}\left[x^{2}-\sqrt{x}\right] \\
& =2 x \frac{d x}{d t}-\frac{1}{2} x^{-1 / 2} \frac{d x}{d t} \\
& =\left[2 x-\frac{1}{2 \sqrt{x}}\right] \frac{d x}{d t} \tag{1}
\end{align*}
$$

(a) Plugging in $x=4$ and $\frac{d x}{d t}=8$ in the above equation (1) we get

$$
\begin{aligned}
\frac{d y}{d t} & =\left[8-\frac{1}{2 \sqrt{4}}\right] \times 8 \\
& =\left[8-\frac{1}{4}\right] \times 8 \\
& =64-2=62 .
\end{aligned}
$$

(b) Plugging in $x=16$ and $\frac{d y}{d t}=12$ in (1) we obtain

$$
\begin{aligned}
& 12 & =\left[32-\frac{1}{2 \sqrt{16}}\right] \frac{d x}{d t} \\
\text { i.e., } & 12 & =\left[32-\frac{1}{8}\right] \frac{d x}{d t} \\
\text { i.e., } & 12 & =\frac{255}{8} \frac{d x}{d t} \\
\text { i.e., } & \frac{d x}{d t} & =\frac{96}{255}=\frac{32}{85} .
\end{aligned}
$$

[4] $x^{2}+y^{2}=25$. Differentiating both sides with respect to t we get

$$
\begin{array}{r}
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
i . e ., \quad x \frac{d x}{d t}+y \frac{d y}{d t}=0 \tag{2}
\end{array}
$$

(a) Putting $x=3, y=4$, and $\frac{d x}{d t}=8$ in (2) we get

$$
\begin{array}{ll}
& 24+4 \frac{d y}{d t}=0 \\
\text { i.e., } & 4 \frac{d y}{d t}=-24 \\
\text { i.e., } & \frac{d y}{d t}=-6 .
\end{array}
$$

(b) Putting $x=4, y=3$, and $\frac{d y}{d t}=-2$ in (2) we get

$$
\begin{array}{ll}
& 4 \frac{d x}{d t}-6=0 \\
\text { i.e., } & 4 \frac{d x}{d t}=6 \\
\text { i.e., } & \frac{d x}{d t}=\frac{6}{4}=\frac{3}{2} .
\end{array}
$$

[10] Volume of the cone is $V=\frac{1}{3} \pi r^{2} h$. But we know that $h=3 r$. Therefore $V=$ $\frac{1}{3} \pi r^{2} \times 3 r=\pi r^{3}$. Now differentiating both sides with respect to t we have

$$
\begin{equation*}
\frac{d V}{d t}=3 \pi r^{2} \frac{d r}{d t} \tag{3}
\end{equation*}
$$

We know that the radius of the cone is increasing at a rate of 2 inches per minute. Mathematically it means that $\frac{d r}{d t}=2 \mathrm{in} / \mathrm{min}$.
(a) To find the rate of change of the volume when $r=6$ inches, we put $r=6$ and $\frac{d r}{d t}=2$ in the equation (3). Then we obtain

$$
\frac{d V}{d t}=3 \pi \times 36 \times 2=216 \pi
$$

Therefore the rate of change of volume at $r=6$ inches is 216π cubic in $/ \mathrm{min}$.
(b) Similarly, when $r=24$ inches we have

$$
\frac{d V}{d t}=3 \pi \times(24)^{2} \times 2=3456 \pi
$$

Therefore the rate of change of volume at $r=24$ inches is 3456π cubic in $/ \mathrm{min}$.
[14] Suppose the length of each edge of the cube is $x \mathrm{~cm}$. [Since the cube is expanding, the edge length x is also increasing. Therefore x depends on 'time' (t) i.e., x is a function of time (t).] Notice that there are total six surface planes of a cube, and area of each surface plane is x^{2} (because edge length is x). Therefore total surface area of the cube is given by $S=6 x^{2}$.

We want to find the rate of change of surface area with respect to time i.e., we have to find $\frac{d S}{d t}$. Differentiating both side of the equation $S=6 x^{2}$ with respect to t (t stands for time), we have

$$
\begin{equation*}
\frac{d S}{d t}=12 x \frac{d x}{d t} . \tag{4}
\end{equation*}
$$

We know that edges are expanding at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. In other words, $\frac{d x}{d t}=3 \mathrm{~cm} / \mathrm{sec}$.
(a) Now putting $x=1$ and $\frac{d x}{d t}=3$ in equation (4) we get

$$
\frac{d S}{d t}=12 \times 3=36
$$

Therefore the surface area of the cube is increasing at the rate of 36 square $\mathrm{cm} / \mathrm{sec}$ when each edge is 1 cm .
(b) Similarly, putting $x=10$ and $\frac{d x}{d t}=3$ in equation (4) we get

$$
\frac{d S}{d t}=120 \times 3=360
$$

Therefore the surface area of the cube is increasing at the rate of 360 square $\mathrm{cm} / \mathrm{sec}$ when each edge is 10 cm .
[16] Given equation $y=\frac{1}{1+x^{2}}$. Rewrite this equation as $y=\left(1+x^{2}\right)^{-1}$. Differentiating both sides with respect to t we have

$$
\begin{align*}
\frac{d y}{d t} & =\frac{d}{d t}\left[\left(1+x^{2}\right)^{-1}\right] \\
& =-\left(1+x^{2}\right)^{-2} \frac{d}{d t}\left[1+x^{2}\right] \\
& =-\left(1+x^{2}\right)^{-2} 2 x \frac{d x}{d t} \tag{5}
\end{align*}
$$

We know that $\frac{d x}{d t}=2 \mathrm{~cm} / \mathrm{min}$.
(a) Plugging in $x=-2$ and $\frac{d x}{d t}=2$ in (5) we have

$$
\begin{aligned}
\frac{d y}{d t} & =-(1+4)^{-2} \times(-4) \times 2 \\
& =-\frac{1}{5^{2}} \times(-8) \\
& =\frac{8}{25} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

(b) Similarly, plugging in $x=2$ and $\frac{d x}{d t}=2$ in (5) we have

$$
\frac{d y}{d t}=-\frac{8}{25} \mathrm{~cm} / \mathrm{min}
$$

(c) When $x=0$

$$
\frac{d y}{d t}=-(1+0)^{-2} \times 0=0 \mathrm{~cm} / \mathrm{min}
$$

(d) and when $x=10$

$$
\begin{aligned}
\frac{d y}{d t} & =-(1+100)^{-2} \times 20 \times 2 \\
& =-\frac{40}{101^{2}} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

[17] Let r be the height of the ladder along the wall (see figure), and the base of the ladder be at a distance x from the wall. By Pythagorean theorem we have $r^{2}+x^{2}=25^{2}$.

We know that base of the ladder is pulled away from the house at a rate of 2 feet per second i.e., $\frac{d x}{d t}=2 \mathrm{ft} / \mathrm{sec}$. We want to find how fast the top of the ladder is moving down i.e, we have to find $\frac{d r}{d t}$. Now differentiating both sides of $r^{2}+x^{2}=25^{2}$ with respect to t we get

$$
\begin{align*}
& 2 r \frac{d r}{d t}+2 x \frac{d x}{d t}=0 \\
\text { i.e., } & r \frac{d r}{d t}+x \frac{d x}{d t}=0 \tag{6}
\end{align*}
$$

(a) When $x=7$, we have $r=\sqrt{25^{2}-7^{2}}=24$. Putting $x=7, r=24$, and $\frac{d x}{d t}=2$ in the equation (6) we obtain

$$
\begin{gathered}
24 \frac{d r}{d t}+14=0 \\
\text { i.e., } \quad \frac{d r}{d t}=-\frac{14}{24}=-\frac{7}{12} .
\end{gathered}
$$

Therefore when the base if 7 feet away from the house, the top of the ladder is moving down at the rate of $\frac{7}{12} \mathrm{ft} / \mathrm{sec}$.
(b) Similarly, when $x=15$ we have $r=\sqrt{25^{2}-15^{2}}=20$. Putting $x=15, r=20$, and $\frac{d x}{d t}=2$ in the equation (6) we obtain

$$
\begin{aligned}
& 20 \frac{d r}{d t}+30=0 \\
& \text { i.e., } \quad \frac{d r}{d t}=-\frac{30}{20}=-\frac{3}{2} .
\end{aligned}
$$

Therefore when the base if 15 feet away from the house, the top of the ladder is moving down at the rate of $\frac{3}{2} \mathrm{ft} / \mathrm{sec}$.
(c) When $x=24$, we have $r=\sqrt{25^{2}-24^{2}}=7$. Putting $x=24, r=7$, and $\frac{d x}{d t}=2$ in the equation (6) we obtain

$$
\begin{aligned}
& \quad 7 \frac{d r}{d t}+48=0 \\
& i . e ., \quad \frac{d r}{d t}=-\frac{48}{7} .
\end{aligned}
$$

Therefore when the base if 24 feet away from the house, the top of the ladder is moving down at the rate of $\frac{48}{7} \mathrm{ft} / \mathrm{sec}$.
[19] Solved in class.

