Section 1.4

[3] Yes it does. Because y can be uniquely written in terms of x

$$
y=\frac{1}{12} x+\frac{1}{2}
$$

[7] No, because there are two possible solutions for y, namely

$$
y= \pm \sqrt{x^{2}-1}
$$

[31] No, fails in vertical line test. Namely we can put a vertical line at origin, and it cuts the graph at two points $(0,3)$ and $(0,-3)$.
[32] Yes.
[33] Yes.
[37] Provided $f(x)=x^{2}+1$ and $g(x)=x-1$.

$$
\begin{aligned}
& f(x)+g(x)=x^{2}+x \\
& f(x) \cdot g(x)=\left(x^{2}+1\right)(x-1) \\
& \frac{f(x)}{g(x)}=\frac{x^{2}+1}{x-1} \\
& f[g(x)]=g(x)^{1}+1=(x-1)^{2}+1=x^{2}-2 x+2 \\
& g[f(x)]=f(x)-1=x^{2}
\end{aligned}
$$

[40] Provided $f(x)=\frac{x}{x+1}$ and $g(x)=x^{3}$.

$$
\begin{aligned}
& f(x)+g(x)=\frac{x}{x+1}+x^{3}=\frac{x^{4}+x^{3}+x}{x+1}=\frac{x\left(x^{3}+x^{2}+1\right)}{x+1} \\
& f(x) \cdot g(x)=\frac{x^{4}}{x+1} \\
& \frac{f(x)}{g(x)}=\frac{1}{x^{2}(x+1)} \\
& f[g(x)]=\frac{g(x)}{g(x)+1}=\frac{x^{3}}{x^{3}+1} \\
& g[f(x)]=[f(x)]^{3}=\left(\frac{x}{x+1}\right)^{3}
\end{aligned}
$$

Domain of $f[g(x)]$ is $x \neq-1$ i.e., all real numbers except -1 .
[51] Let $g(x)$ be the inverse of $f(x)$. We have $f[g(x)]=x$, which gives us

$$
\begin{array}{ll}
& 2 g(x)-3=x \\
\Rightarrow & 2 g(x)=x+3 \\
\Rightarrow & g(x)=\frac{x+3}{2}
\end{array}
$$

Also check that

$$
\begin{aligned}
g[f(x)] & =\frac{f(x)+3}{2} \\
& =\frac{(2 x-3)+3}{2} \\
& =\frac{2 x}{2}=x .
\end{aligned}
$$

Therefore $g(x)=\frac{x+3}{2}$ is the inverse of the function $f(x)$.
[55] Let $g(x)$ be the inverse of $f(x)$. We have $f[g(x)]=x$, which gives us

$$
\begin{array}{ll}
& \sqrt{9-g(x)^{2}}=x \\
\Rightarrow & 9-g(x)^{2}=x^{2} \\
\Rightarrow & g(x)^{2}=9-x^{2} \\
\Rightarrow \quad & g(x)= \pm \sqrt{9-x^{2}}
\end{array}
$$

Now we need to determine whether $g(x)=\sqrt{9-x^{2}}$ or $g(x)=-\sqrt{9-x^{2}}$ (note that it can't be both at a time, then it will not be a function). We know that the domain of $f(x)$ is $0 \leq x \leq 3$. We know that $f[g(x)]=x$. Therefore $g(x)$ can be considered as a input of $f(x)$ i.e., value of $g(x)$ must lie in the interval $[0,3]$. Which forces $g(x)$ to be non-negative. Therefore

$$
g(x)=\sqrt{9-x^{2}} .
$$

Now we need to determine the domain of $g(x)$. First of all, $\sqrt{9-x^{2}}$ is defined for $9-x^{2} \geq 0$ i.e., $-3 \leq x \leq 3$. But we also have

$$
g[f(x)]=x \quad \text { (check that })
$$

Therefore possible inputs of $g(x)$ are $f(x)$. And we notice that $f(x)=\sqrt{9-x^{2}}$ is always non-negative. In fact possible outcomes of $f(x)$ i.e., range of $f(x)$ is the interval $[0,3]$ (check that). So domain of $g(x)$ is $0 \leq x \leq 3$. Finally we have

$$
f^{-1}(x)=g(x)=\sqrt{9-x^{2}} ; \quad 0 \leq x \leq 3
$$

Remark: If f is an invertible function then we have

$$
\begin{aligned}
& \text { Domain } f=\text { Range } f^{-1} \\
& \text { Domain } f^{-1}=\text { Range } f .
\end{aligned}
$$

