Type your name here: \qquad
Signature: \qquad August 2, 2013

Before the exam begins:

- Fill in all boxes above.
- Turn off all electronics and keep them out of sight: no cellular phones, iPods, wearing of headphones, not even to tell time (and not even if it's just in airplane mode).

As soon as the exam starts:

- Take a quick breath to relax! If you have truly worked through all the homework problems then you will do fine!
- check that you have all 8 pages of the exam. (The number of pages includes this cover page.)
- Write your name at the top (in the space provided) of EACH page. (This is to ensure your pages can be identified with you if the staple holding your exam stops working.)

During the exam:

- Keep your eyes on your own exam!
- No notes/books or electronics AT ALL!

Note that the exam length is exactly 1 hr 30 mins. When you are told to stop, you must stop IMMEDIATELY. This is in fairness to all students. Do not think that you are the exception to this rule.

Problem	1	2	3	4	5	6	Total
Score							

Print your initials:

Trigonometry

- Formula:

$$
\begin{gathered}
\sin (a+b)=\sin a \cos b+\cos a \sin b, \quad \sin (a-b)=\sin a \cos b-\cos a \sin b \\
\cos (a+b)=\cos a \cos b-\sin a \sin b, \quad \cos (a-b)=\cos a \cos b+\sin a \sin b \\
\sin 2 x=2 \sin x \cos x, \quad \cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
\sin ^{2} x+\cos ^{2} x=1 \\
\sec ^{2} x-\tan ^{2} x=1 \\
\csc ^{2} x-\cot ^{2} x=1 .
\end{gathered}
$$

- Particular values:

	$x=0$	$x=\frac{\pi}{6}$	$x=\frac{\pi}{4}$	$x=\frac{\pi}{3}$	$x=\frac{\pi}{2}$	$x=\pi$
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	DNE	0
$\csc x$	DNE	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	DNE
$\sec x$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	DNE	-1
$\cot x$	DNE	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	DNE

Geometry

- Circle: If radius $=r$, then perimeter $=2 \pi r$ and area $=\pi r^{2}$.
- Sphere: If radius $=r$, then surface area $=4 \pi r^{2}$ and volume $=\frac{4}{3} \pi r^{3}$.
- Solid: Volume of a rectangular solid is length \times width \times height.
- Cone: If height $=h$ and radius (of circular base) $=r$, then volume $=\frac{1}{3} \pi r^{2} h$.

Logarithm

$$
\begin{aligned}
& \log a b=\log a+\log b, \quad \text { for } a>0, b>0 \\
& \log \frac{a}{b}=\log a-\log b, \quad \text { for } a>0, b>0 \\
& \log a^{b}=b \log a, \quad \text { for } a>0 \\
& e^{\ln a}=a, \quad \text { for } a>0 \\
& \ln e^{a}=a, \quad \text { true for any real number } a \\
& \ln e=1 \\
& \ln 1=0
\end{aligned}
$$

Print your initials:

Problem 1: (10 points) Find the values of a and b such that the following function becomes continuous on the whole real line.

$$
f(x)=\left\{\begin{array}{cl}
3 x+a, & \text { if } x<1 \\
-x^{3}+4, & \text { if } 1 \leq x \leq 2 \\
b x^{2}+2 & \text { if } x>2
\end{array}\right.
$$

Solution: Possible points of discontinuities are $x=1,2$. We want the function to be continuous at both $x=1$ and $x=2$. We compute

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =3+a \\
\lim _{x \rightarrow 1^{+}} f(x) & =-1^{3}+4=-1+4=3 \\
\lim _{x \rightarrow 2^{-}} f(x) & =-2^{3}+4=-8+4=-4 \\
\lim _{x \rightarrow 1^{+}} f(x) & =4 b+2
\end{aligned}
$$

Since the function has to be continuous at $x=1$ and $x=2$ we must have

$$
\begin{array}{ll}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \\
\text { i.e., } & 3+a=3 \\
\text { i.e., } & a=0
\end{array}
$$

and

$$
\begin{array}{ll}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x) \\
\text { i.e., } & -4=4 b+2 \\
\text { i.e., } & 4 b=-6 \\
\text { i.e., } & b=-\frac{6}{4}=-\frac{3}{2} .
\end{array}
$$

Print your initials:

Problem 2: (10 points) Find the equation of the tangent line to the graph of $f(x)=3+x \cos x$ at $(0,3)$.
Solution: Slope of the tangent line is $f^{\prime}(0)$. Differentiating f with respect to x we get

$$
\begin{aligned}
f^{\prime}(x) & =0+\frac{d}{d x}[x] \cos x+x \frac{d}{d x}[\cos x] \\
& =\cos x-x \sin x
\end{aligned}
$$

Therefore slope of the tangent line is $f^{\prime}(0)=\cos 0-0=1$. Hence equation of the tangent line is

$$
\begin{array}{ll}
& y-3=f^{\prime}(0)(x-0) \\
\text { i.e., } & y-3=x \\
\text { i.e., } & y-x-3=0 .
\end{array}
$$

Print your initials:

Problem 3: (10 points) Find the derivative of $f(x)=\frac{\tan \sqrt{x}}{1+x^{2}}, x \geq 0$.
Solution: Using quotient rule and chain rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(1+x^{2}\right) \frac{d}{d x}[\tan \sqrt{x}]-\tan \sqrt{x} \frac{d}{d x}\left[1+x^{2}\right]}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\left(1+x^{2}\right) \sec ^{2} \sqrt{x} \frac{d}{d x}[\sqrt{x}]-2 x \tan \sqrt{x}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\frac{1}{2 \sqrt{x}}\left(1+x^{2}\right) \sec ^{2} \sqrt{x}-2 x \tan \sqrt{x}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\left(1+x^{2}\right) \sec ^{2} \sqrt{x}-4 x \sqrt{x} \tan \sqrt{x}}{2 \sqrt{x}\left(1+x^{2}\right)^{2}} .
\end{aligned}
$$

Print your initials:

Problem 4: (10 points) A point is moving along the graph of $y=x^{3}$ such that $\frac{d y}{d t}=2$ centimeters per minute. Find $\frac{d x}{d t}$ when $x=1$.

Solution: Differentiating the equation $y=x^{3}$ with respect to t we get

$$
\frac{d y}{d t}=3 x^{2} \frac{d x}{d t}
$$

We know that $\frac{d y}{d t}=2 \mathrm{~cm} / \mathrm{sec}$. Therefore $\frac{d x}{d t}$ at $x=1$ is

$$
\begin{aligned}
& 2=3 \frac{d x}{d t} \\
& \text { i.e., } \quad \frac{d x}{d t} \\
&=\frac{2}{3} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Print your initials:

Problem 5: (10 points) Find all relative extrema of $f(x)=2 x^{3}-3 x^{2}-12 x$.
Solution: Differentiating f twice with respect to x we have

$$
f^{\prime}(x)=6 x^{2}-6 x-12
$$

and

$$
f^{\prime \prime}(x)=12 x-6
$$

To find the critical points we solve

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\text { i.e., } & 6 x^{2}-6 x-12=0 \\
\text { i.e., } & x^{2}-x-2=0 \\
\text { i.e., } & (x+1)(x-2)=0 \\
\text { i.e., } & x=-1,2 .
\end{array}
$$

We notice that $f^{\prime \prime}(-1)=-18<0$ and $f^{\prime \prime}(2)=18>0$. Therefore $x=-1$ is a maxima and $x=2$ is a minima.

Print your initials:

Problem 6: (10 points) An open box is to be made from a six-inch by six-inch square piece of material by cutting equal squares from the corners and turning up the sides. Find the volume of the largest box that can be made.

Solution: Let side length of the cut out squares is x in. Then the base area of the open top box is $(6-2 x) \times(6-2 x)=(6-2 x)^{2}$, and height of the box is going to be x. Hence volume of the open top box is going to be

$$
\begin{aligned}
V & =(6-2 x)^{2} x \\
& =\left(4 x^{2}-24 x+36\right) x \\
& =4 x^{3}-24 x^{2}+36 x
\end{aligned}
$$

We want to maximize the volume. Differentiating V twice with respect to x we get

$$
\frac{d V}{d x}=12 x^{2}-48 x+36
$$

and

$$
\frac{d^{2} V}{d x^{2}}=24 x-48
$$

To find the critical numbers we solve

$$
\begin{array}{ll}
& \frac{d V}{d x}=0 \\
\text { i.e., } & 12 x^{2}-48 x+36=0 \\
\text { i.e., } & x^{2}-4 x+3=0 \\
\text { i.e., } & (x-1)(x-3)=0 \\
\text { i.e., } & x=1,3 .
\end{array}
$$

We test

$$
\left.\frac{d^{2} V}{d x^{2}}\right|_{x=1}=-24<0 \quad \text { and }\left.\quad \frac{d^{2} V}{d x^{2}}\right|_{x=3}=24>0
$$

Therefore $x=1$ is a maxima. Hence the largest volume that can be made is

$$
\begin{aligned}
V_{\max } & =(6-2)^{2} \cdot 1 \\
& =16 \text { square inch. }
\end{aligned}
$$

